Abstract:
The present invention relates to droplet-based particle sorting. According to one embodiment, a droplet microactuator is provided and includes: (a) a suspension of particles; and (b) electrodes arranged for conducting droplet operations using droplets comprising particles. A method of transporting a particle is also provided, wherein the method includes providing a droplet comprising the particle and transporting the droplet on a droplet microactuator.
Abstract:
A method of preparing a nucleic acid library in droplets in contact with oil, including: (a) blunt-ending nucleic acid fragments in a droplet in the oil to yield blunt-ended nucleic acid fragments; (b) phosphorylating the blunt-ended nucleic acid fragments in a droplet in the oil to yield phosphorylated nucleic acid fragments; coupling A-tails to the phosphorylated nucleic acid fragments in a droplet in the oil to yield A-tailed nucleic acid fragments; and (d) coupling nucleic acid adapters to the A-tailed nucleic acid fragments in a droplet in the oil to yield the nucleic acid library comprising adapter-ligated nucleic acid fragments.
Abstract:
Aspects of embodiments may include methods for automated enzymatic detection of glucose-6-phosphate dehydrogenase (G6PD) activity. Aspects of embodiments may include methods for enzymatic detection of G6PD activity in droplets in oil. Aspects of embodiments may include a system including a droplet actuator. Aspects of embodiments may include a treatment method.
Abstract:
Methods and devices for conducting chemical or biochemical reactions that require multiple reaction temperatures are described. The methods involve moving one or more reaction droplets or reaction volumes through various reaction zones having different temperatures on a microfluidics apparatus. The devices comprise a microfluidics apparatus comprising appropriate actuators capable of moving reaction droplets or reaction volumes through the various reaction zones.
Abstract:
The invention provides a method of dispersing or circulating magnetically responsive beads within a droplet in a droplet actuator. The invention, in one embodiment, makes use of a droplet actuator with a plurality of droplet operations electrodes configured to transport the droplet, and a magnetic field present at a portion of the plurality of droplet operations electrodes. A bead-containing droplet is provided on the droplet actuator in the presence of the uniform magnetic field. Beads are circulated in the droplet during incubation by conducting droplet operations on the droplet within a uniform region of the magnate field. Other embodiments are also provided.
Abstract:
The present invention relates to filler fluids for droplet operations. According to one embodiment of this aspect, a droplet microactuator including an opaque filler fluid and a transparent droplet thereon is provided. The droplet microactuator may further include a first substrate comprising electrodes configured to effect electrowetting mediated droplet operations on a surface of the first substrate; a second substrate spaced apart from the surface of the first substrate by a distance sufficient to define an interior volume between the first substrate and second substrate; and wherein the droplet and the filler fluid are in the interior volume, and wherein the droplet is surrounded by the filler fluid and arranged with respect to the electrodes in a manner which permits electrowetting mediated droplet operations to be effected on the droplet using the electrodes.
Abstract:
Droplet actuator apparatus and system are provided. An apparatus comprises: a microfluidics system having an insertion slot for insertion of a droplet actuator; a bottom plate against which the droplet actuator would slide when inserting the droplet actuator into the insertion slot; and means for forcing a substrate in the droplet actuator parallel to the bottom plate, wherein warpage in the substrate is corrected.
Abstract:
Droplet actuators that include molecular barrier coatings are provided. The molecular barrier coating may be provided atop the conductive layer of the top substrate, atop the droplet operations electrodes of the bottom substrate, or both. Where the conductive layer of the top substrate and/or the droplet operations electrodes of the bottom substrate are formed of an electrically conductive organic polymer, such as poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), the molecular barrier coating helps to immobilize the contents of the PEDOT:PSS layer. Further, the molecular barrier coating reduces, preferably entirely eliminates, moisture from seeping into the electrically conducting organic polymer. Methods of conducting droplet operations using the disclosed droplet actuators are also provided.
Abstract:
A method comprising effecting a change in a shape of a droplet, wherein the droplet is disposed over a substrate in sensing proximity to a sensor and the droplet has a starting surface area exposed to the sensor; and producing an expanded surface area of the droplet in the sensing proximity exposed to the sensor, wherein the expanded surface area exposed to the sensor is greater than the starting surface area exposed to the sensor.
Abstract:
Provided herein are methods of splitting droplets containing magnetically responsive beads in a droplet actuator. A droplet actuator having a plurality of droplet operations electrodes configured to transport the droplet, and a magnetic field present at the droplet operations electrodes, is provided. The magnetically responsive beads in the droplet are immobilized using the magnetic field and the plurality of droplet operations electrodes are used to split the droplet into first and second droplets while the magnetically responsive beads remain substantially immobilized.