Abstract:
Systems and methods for high resolution and high sensitivity spectroscopy are disclosed. High resolution can be obtained in conjunction with comb sources via comb resolved spectroscopy. For example, Fourier transform spectroscopy with a scan range larger than a cavity round trip time of the comb sources can be used to obtain comb resolution, where it may be useful to match the comb lines of the source with the sampling points of the Fourier transform spectrometer. High sensitivity can be obtained using multiple passes through a gas cell, cavity enhanced spectroscopy, cavity ring-down spectroscopy, or photo-acoustic spectroscopy. Fiber or solid-state lasers as well as semiconductor or quantum cascade based lasers can be used as comb injection sources. These sources can also be combined with nonlinear frequency broadening techniques via supercontinuum generation, DFG, OPOs or OPAs.
Abstract:
The present invention relates to frequency rulers. At least one embodiment includes a mode locked pump source operated at pulse repetition rate, and a pump output having a pump carrier envelope offset frequency. A nonlinear optical system outputs a frequency ruler spectrum comprising individual frequency modes. The frequency modes may be characterized by a frequency spacing which is an integer multiple of the repetition rate and by distinct ruler carrier envelope offset frequencies which exhibit at least one discontinuity across the frequency output. The ruler carrier envelope offset frequencies are substantially locked to the carrier envelope offset frequency of the pump laser. One preferred embodiment includes a frequency doubled, doubly resonant, non-degenerate OPO (DNOPO), a supercontinuum generation (SC) stage and at least one reference laser arranged downstream from a Tm fiber-based pump source. A plurality of beat signals generated therefrom provide for stabilization of the system.
Abstract:
Methods, devices, and systems for ultrashort pulse laser processing of optically transparent materials are disclosed, with example applications in scribing, marking, welding, and joining. For example, ultrashort laser pulses create scribe features with one pass of the laser beam across the material, with at least one of the scribe features being formed below the surface of the material. Slightly modifying the ultrashort pulse laser processing conditions produces sub-surface marks. When properly arranged, these marks are clearly visible with correctly aligned illumination. Reflective marks may also be formed with control of laser parameters. A transparent material other than glass may be utilized. A method for welding transparent materials uses ultrashort laser pulses to create a bond through localized heating. In some embodiments of transparent material processing, a multifocus beam generator simultaneously forms multiple beam waists spaced depthwise relative to the transparent material, thereby increasing processing speed.
Abstract:
Various embodiments described herein include rare earth doped glass compositions that may be used in optical fiber and rods having large core sizes. Such optical fibers and rods may be employed in fiber lasers and amplifiers. The index of refraction of the glass may be substantially uniform and may be close to that of silica in some embodiments. Possible advantages to such features include reduction of formation of additional waveguides within the core, which becomes increasingly a problem with larger core sizes.
Abstract:
A predoping method for a negative electrode active material of an energy storage device, comprising at least one predoping material that can provide an ion that is different from a primary ionic charge carrier for a charging and discharging process of the energy storage device, called non-primary predoping material. The predoping material may be first included in a predoping electrode and later discharged to the negative electrode active material. The predoping material may be first mixed with the negative electrode active material in an electrode fabrication process, and later made to directly contact the negative electrode active material by adding an electrolyte and removing the protective shells of the predoping material. An ion exchanging method is used to exchange a first ion coming from the predoping material for a second ion in an electrode stack.
Abstract:
By compensating polarization mode-dispersion as well chromatic dispersion in photonic crystal fiber pulse compressors, high pulse energies can be obtained from all-fiber chirped pulse amplification systems. By inducing third-order dispersion in fiber amplifiers via self-phase modulation, the third-order chromatic dispersion from bulk grating pulse compressors can be compensated and the pulse quality of hybrid fiber/bulk chirped pulse amplification systems can be improved. Finally, by amplifying positively chirped pulses in negative dispersion fiber amplifiers, a low noise wavelength tunable seed source via anti-Stokes frequency shifting can be obtained.
Abstract:
The present invention relates to precision linewidth control and frequency measurements of continuous wave lasers for the near to far IR spectral regions, precision frequency synthesizers and exemplary applications in molecular detection. Methods and systems are disclosed for simultaneous line narrowing of cw lasers, as well as referencing the desired emission wavelength to a frequency comb laser.
Abstract:
The present invention relates to a mass spectrometer system, which combines laser desorption with pulse bursts comprising a train of ultrashort pulses and electrospray ionization. The pulse separation between individual pulses within the pulse burst is selected such that transient phenomena on an irradiated sample do not fully relax between individual pulses. Pulses with pulse widths ranging from fs to sub ns are conveniently implemented. The pulse widths can be selected to allow for multi-photon excitation of a sample while at the same time minimizing heat accumulation in a sample. Low cost laser systems such as fiber lasers can be configured to generate appropriate pulse bursts. The technique is suitable for mass spectrometry imaging with high spatial resolution. The laser system can serve as an electronic clock to which the whole mass spectrometry system or mass spectrometry imaging system is synchronized.
Abstract:
The present invention relates to precision linewidth control and frequency measurements of continuous wave lasers for the near to far IR spectral regions, precision frequency synthesizers and exemplary applications in molecular detection. Methods and systems are disclosed for simultaneous line narrowing of cw lasers, as well as referencing the desired emission wavelength to a frequency comb laser.
Abstract:
A laser utilizes a cavity design which allows the stable generation of high peak power pulses from mode-locked multi-mode fiber lasers, greatly extending the peak power limits of conventional mode-locked single-mode fiber lasers. Mode-locking may be induced by insertion of a saturable absorber into the cavity and by inserting one or more mode-filters to ensure the oscillation of the fundamental mode in the multi-mode fiber. The probability of damage of the absorber may be minimized by the insertion of an additional semiconductor optical power limiter into the cavity.