Abstract:
An illumination apparatus includes a light source unit comprising at least one light source module comprising a plurality of light-emitting device chips and a lead frame on which the light-emitting device chips are mounted and which connects the mounted light-emitting device chips; a diffusion cover having an interior space in which the light source module is accommodated and diffusing light emitted from the light source module; and an installation portion formed adjacent to the diffusion cover to install the light source module.
Abstract:
The present invention relates to a succinic acid-producing mutant microorganism that is able to utilize sucrose and glycerol simultaneously as carbon sources. More particularly, the present invention relates to a succinic acid-producing mutant microorganism that is able to utilize sucrose and glycerol simultaneously for succinic acid production, the mutant organism being obtained by relieving the mechanism of sucrose-mediated catabolite repression of glycerol in a succinic acid-producing microorganism. As described above, when the succinic acid-producing mutant microorganism is cultured, it utilizes sucrose and glycerol simultaneously so that succinic acid can be produced with high productivity in a maximum yield approaching the theoretical yield while the production of byproducts is minimized. In addition, according to the present invention, various reduced chemicals which have been produced in low yields in conventional methods can be more effectively produced.
Abstract:
A lead frame for a chip package, a chip package, a package module, and an illumination apparatus including the chip package module. The chip package includes a first coupling portion and a second coupling portion that are coupled to each other on edges of a lead frame for mounting a chip thereon, and thus a package module is easily embodied by coupling the first coupling portion and the second coupling portion to each other.
Abstract:
A lead frame for a chip package, a chip package, a package module, and an illumination apparatus including the chip package module. The chip package includes a first coupling portion and a second coupling portion that are coupled to each other on edges of a lead frame for mounting a chip thereon, and thus a package module is easily embodied by coupling the first coupling portion and the second coupling portion to each other.
Abstract:
Provided are a semiconductor light emitting device having a nano pattern and a method of manufacturing the semiconductor light emitting device. The semiconductor light emitting device includes: a semiconductor layer comprising a plurality of nano patterns, wherein the plurality of nano patterns are formed inside the semiconductor layer; and an active layer formed on the semiconductor layer. The optical output efficiency is increased and inner defects of the semiconductor light emitting device are reduced.
Abstract:
A nitride-based semiconductor light emitting device having an improved structure in which light extraction efficiency is improved and a method of manufacturing the same are provided. The nitride-based semiconductor light emitting device comprises an n-clad layer, an active layer, and a p-clad layer, which are sequentially stacked on a substrate, wherein the n-clad layer comprises a first clad layer, a second clad layer, and a light extraction layer interposed between the first clad layer and the second clad layer and composed of an array of a plurality of nano-posts, the light extraction layer diffracting or/and scattering light generated in the active layer.
Abstract:
A semiconductor light emitting device and a method of manufacturing the semiconductor light emitting device are provided. The semiconductor light emitting device includes a substrate, at least two light emitting cells located on the substrate and formed by stacking semiconductor material layers, a reflection layer and a transparent insulating layer sequentially stacked between the light emitting cells, and a transparent electrode covering the upper surface of the light emitting cells.
Abstract:
A nitride-based semiconductor light-emitting device having an improved structure to enhance light extraction efficiency, and a method of manufacturing the same are provided. The method includes the operations of sequentially forming an n-clad layer, an active layer, and a p-clad layer on a substrate; forming a plurality of masking dots on an upper surface of the p-clad layer; forming a p-contact layer having a rough surface on portions of the p-clad layer between the masking dots; forming a rough n-contact surface of the n-clad layer having the same rough shape as the rough shape of the p-contact layer by dry-etching from a portion of the upper surface of the p-contact layer to a desired depth of the n-clad layer; forming an n-electrode on the rough n-contact surface; and forming a p-electrode on the p-contact layer.
Abstract:
A semiconductor light emitting diode having a textured structure and a method of manufacturing the semiconductor light emitting diode are provided. The method includes forming a first semiconductor layer on a substrate; forming a textured structured first semiconductor layer by penetrating a material of a material layer into the first semiconductor layer after the material layer is formed on the first semiconductor layer and is annealed; and forming a second semiconductor layer on the first semiconductor layer.
Abstract:
A nucleotide sequence encoding a malic enzyme and a method for preparing succinic acid using the same, more particularly, a maeB nucleotide sequence encoding a malic enzyme B having the activity of converting pyruvic acid or pyruvate to malic acid or malate, or vice versa, a recombinant vector containing the gene, a microorganism transformed with the recombinant vector, and a method for preparing succinic acid using the transformed microorganism.