Abstract:
Systems and methods for Multi-Radio Access Technology (RAT) Carrier Aggregation (MRCA) wireless wide area network (WWAN) assisted wireless local area network (WLAN) flow mapping and flow routing are disclosed. One system comprises a dynamic flow mapping module that is configured to form a flow-mapping table to dynamically map service flows between the WWAN radio and the WLAN radio in the wireless device. A flow routing module is configured to route data packets to one of the WWAN radio and the WLAN radio in the wireless device based on the flow-mapping table to transmit and receive the data packets via the wireless device.
Abstract:
Technology for configuring component carriers in carrier aggregation is disclosed. One method comprises scanning for an enhanced Node B (eNode B) with a user equipment (UE). An eNode B is selected by the UE. The UE is attached to an available carrier provided by the eNode B. The available carrier is designated as a Primary Component Carrier (PCC). The PCC is configured as a component carrier pair comprising a downlink primary component carrier (DL PCC) and an uplink primary component carrier (UL PCC). Mobility management and security input information is received at the UE from the eNode B via the DL PCC and the UL PCC.
Abstract:
Systems and methods for controlling data traffic offload to a WLAN (e.g., a Wi-Fi network) from a WWAN (e.g., a 4G LTE network) are generally disclosed herein. One embodiment includes data traffic offload techniques managed by a Radio Resource Control (RRC) in a networked device including offloading data at the IP, PDCP, RLC, or MAC layers; another embodiment includes data traffic offload techniques managed by a MAC Scheduler with RRC control. Configurations for multimode user equipment (UE) and multimode base stations are also described herein, including configurations for implementing a Multiple Radio Access Technology (Multi-RAT) aggregation function to offload data from a WWAN to a WLAN and transmit the data via the WLAN using a Layer 2 transport.
Abstract:
Systems and methods for opportunistic cross radio access technology (RAT) bandwidth allocation are disclosed. The system comprises wireless wide area network (WWAN) radio configured to be used as a primary cell (PCell) to communicate with a dual mode mobile wireless device on a licensed band and a wireless local area network (WLAN) radio integrated with the WWAN radio and configured to be used as a secondary cell (SCell) to provide additional wireless connectivity to the dual mode mobile wireless device in an unlicensed band that is controlled by the PCell. The PCell provides network access and mobility control for the dual mode mobile wireless device and also supports an opportunistic cross carrier bandwidth allocation through a cross RAT coordination module in the downlink and uplink of the SCell in the unlicensed band.
Abstract:
Technology for determining a common search space (CSS) from a physical resource block (PRB) indication for a stand-alone carrier type is disclosed. In an example, a user equipment (UE) configured for determining a common search space (CSS) from a physical resource block (PRB) indication for a stand-alone carrier type can include a processing module to: Determine a PRB set in the CSS from an enhanced physical hybrid automatic repeat request (ARQ) indicator channel (ePHICH) configuration information in a master information block (MIB); and decode an enhanced physical downlink control channel (ePDCCH) or the ePHICH from PRB region candidates in the PRB set.
Abstract:
An apparatus may include a transceiver operable to receive a downlink message from a base station for a serving cell, the downlink message allocating a set of control parameters. The apparatus may also include a processor circuit communicatively coupled to the transceiver and an uplink power control module operable on the processor circuit to read the set of control parameters, and apply a signal-to-noise-and-interference (SINR) parameter based on the received set of control parameters to determine physical uplink shared channel (PUSCH) power to be applied for a PUSCH transmission. Other embodiments are disclosed and claimed.
Abstract:
The various inventive embodiments relate to arrangement of information elements (IEs) for persistent and/or dynamic allocations in a wireless broadband network and include optimization techniques to eliminate the repetitive information fields from the downlink (DL)-Persistent-IEs, uplink (UL)-Persistent-IEs, DL-IEs, and UL-IEs. Elimination of repetitive information fields reduces MAP overhead. In addition embodiments relate to methods to use the same hybrid automatic repeat request (HARQ) region to contain persistent as well as non-persistent allocations. The use of the same HARQ region for persistent as well as non-persistent allocations further reduces the MAP overhead as it requires a single header to define the HARQ region instead of the two headers that are required to define two different HARQ regions: one for persistent allocation and the second one for non-persistent allocations.
Abstract:
Technology for communicating enhanced physical downlink control channels (ePDCCHs) configured for inter-cell interference coordination (ICIC) for a plurality of cells in a physical resource block (PRB) is disclosed. One method can include a node mapping a serving cell control channel element (CCE) in an serving cell ePDCCH in a PRB and a coordination cell CCE in a coordination cell ePDCCH in the PRB. The node can transmit the map of the serving cell CCE and the coordination cell CCE to a wireless device.
Abstract:
A method, system, apparatus and article are described for managing enhanced multicast broadcast services. In some embodiments, for example, a first connection may be established using a first wireless communication protocol, scheduling information for one or more multicast or broadcast data services may be received using the first wireless communication protocol, one or more of the multicast or broadcast data services may be selected, and a second connection using a second wireless communication protocol may be established to receive the one or more selected multicast or broadcast data services. Other embodiments are described and claimed.
Abstract:
Techniques are described that can be used to assign identifiers to carriers of a multi-carrier mobile station. In some cases, each carrier of the mobile station is assigned the same identifiers. In some cases, each carrier of the mobile station is assigned a unique identifier on each channel.