摘要:
An apparatus for regulating salt concentration, a lab-on-a-chip including the same and a method of regulating salt concentration using the apparatus are provided. The apparatus includes: a reaction chamber that is defined by a cation exchange membrane and an anion exchange membrane and is selected from the group consisting of a biomolecule extraction chamber, an amplification chamber, a hybridization chamber, and a detection chamber; a first electrode chamber that is defined by the anion exchange membrane and a first electrode and includes an ion exchange medium; and a second electrode chamber that is defined by the cation exchange membrane and a second electrode and includes an ion exchange medium. Even without injecting solutions with different salt concentrations into the reaction chamber by operating pumps and valves for each operation stage, the salt concentration can be reversibly regulated in situ by adjusting the polarity, intensity and application time of a voltage.
摘要:
Provided is a method of isolating and purifying biomolecules using a hydrogel, the method including: bring a sample containing charged biomolecules into contact with a hydrogel to bind the biomolecules to the hydrogel; washing the hydrogel bound with the biomolecules; and eluting the bound biomolecules using an elution solvent. According to the method, the use of a hydrogel with a large surface area reduces the isolation time of biomolecules to 5 min or less, an external device such as an electromagnet is not required, and small-sized systems or LOC can be easily implemented due to applicability to microsystems through a polymer patterning technique.
摘要:
A method of controlling a mobile terminal, and which includes displaying, on a touch screen display of the mobile terminal, an operation screen corresponding to a current operating mode executing on the mobile terminal; detecting, via a detecting device, a touch input on the touch screen display of the mobile terminal; determining, via a controller on the mobile terminal, a first finger characteristic describing a finger touching the touch screen display and a second finger characteristic describing the finger touching the touch screen display that is different than the first finger characteristic; performing, via the controller, a first operation relevant to the current operating mode based on the determined first finger characteristic; and performing, via the controller, a second operation relevant to the current operating mode based on the determined second finger characteristic.
摘要:
Provided are a microfluidic device that performs a biochemical reaction using a small amount of a biochemical fluid and detects the result thereof, and a method of fabricating the same. The microfluidic device includes: a substrate which comprises a chamber that is formed as a concave groove and accommodates a fluid in the bottom surface of the substrate, and is formed of polymer; and a film welded on the bottom surface of the substrate to seal the chamber so that the chamber is not open at the bottom surface of the substrate, and formed of polymer. The method of fabricating a microfluidic device includes: preparing a substrate which comprises a chamber that is formed as a concave groove and accommodates a fluid in the bottom surface of the substrate, and is formed of polymer; and welding a film on a bottom surface of the substrate to seal the chamber so that the chamber is not opened at the bottom surface of the substrate, the film being formed of polymer.
摘要:
Provided is a method of lysing a cell or a virus using a free radical. The method includes: applying an electric field to a mixture of a metal ion, a peroxide, and a cell or virus solution to increase the free radical generation, thereby lysing a cell or a virus. In the present method, cell lysis may be efficiently performed using a low electrical energy (several mV to several V). When the present method is applied to a microsystem, cell lysis can occur at a desired time and in a desired space by controlling the electrical energy, thus being suitable to realize a lab-on-a-chip (LOC).
摘要:
Provided is a method of treating a surface of a substrate used in a biochemical reaction system, the method including forming a polymer film on the surface by vapor deposition of a compound of formula (1) below and a compound of formula (2) below: (RO)3—Si—(CH2)n1—X (1) (RO)3—Si—(CH2)n2—(CF2)m—X (2) wherein R is one of a methyl group and an ethyl group, X is one of a methyl group and a trifluoromethyl group, n1 is an integer from 1 to 3, n2 is an integer from 1 to 10, and m is an integer from 1 to 10.
摘要:
A wafer transferring robot in semiconductor device fabricating equipment and a method of detecting wafer warpage by using the wafer transferring robot are provided. In the realizing the wafer transferring robot to transfer a wafer, vacuum lines are formed to adsorb a plurality of regions of the wafer. Whether the wafer is warped or not and the extent of warpage are determined in real time, depending on whether the wafer is adsorbed by the vacuum lines. When no warpage occurs on the wafer or when the extent of warpage is slight, the wafer is allowed to be normally processed. When the extent of warpage is too serious to perform a normal process on the wafer, the wafer is previously processed as an error, thereby preventing the waste of time, cost and manpower caused by performing an unnecessary process.
摘要:
Disclosed herein is a method of releasing a photoresist film from a substrate, which includes forming a self-assembled monolayer (SAM) on a substrate; coating the SAM with a photoresist film; and rinsing the substrate with an alcohol or an acid. According to the photoresist film releasing method, a photoresist film can be easily released from a substrate without damage after patterning. A method of bonding a released photoresist film with a substrate includes arraying a second substrate and the photoresist film released from a first substrate, and baking the second substrate. According to the bonding method, the photoresist film can be perfectly bonded with a second substrate without generating a crevice even though an additional adhesive is not used.
摘要:
Disclosed herein is a method of culturing stem cells, which can remove differentiated cells generated in stem cell culture, using ABC transporters, according to a stem cell's characteristic in that the stem cells contain a plurality of the ABC transporters. The method comprises the steps of: bringing a stem cell culture into contact with an antitumor drug or toxin as a substrate of ATP-Binding Cassette transporters (ABC transporters) to allow the substrate to react with the stem cell culture; and reculturing viable cells among the stem cell culture which reacted with the substrate, the viable cells having no substrate introduced therein. According to the disclosed method, the differentiated cells generated in stem cell culture can be easily removed using an antitumor drug or toxin among various substrates of the ABC transporters. Thus, the method has an excellent effect capable of significantly increasing the purity of a stem cell culture.
摘要:
Provided is a method of lysing a cell or a virus using a free radical. The method includes: applying an electric field to a mixture of a metal ion, a peroxide, and a cell or virus solution to increase the free radical generation, thereby lysing a cell or a virus. In the present method, cell lysis may be efficiently performed using a low electrical energy (several mV to several V). When the present method is applied to a microsystem, cell lysis can occur at a desired time and in a desired space by controlling the electrical energy, thus being suitable to realize a lab-on-a-chip (LOC).