Abstract:
A method of managing memory includes installing a first cacheline at a first location in a cache memory and receiving a write request. In response to the write request, the first cacheline is modified in accordance with the write request and marked as dirty. Also in response to the write request, a second cacheline is installed that duplicates the first cacheline, as modified in accordance with the write request, at a second location in the cache memory.
Abstract:
The described embodiments comprise a selection mechanism that selects a resource from a set of resources in a computing device for performing an operation. In some embodiments, the selection mechanism is configured to perform a lookup in a table selected from a set of tables to identify a resource from the set of resources. When the identified resource is not available for performing the operation and until a resource is selected for performing the operation, the selection mechanism is configured to identify a next resource in the table and select the next resource for performing the operation when the next resource is available for performing the operation.
Abstract:
Data caching methods and systems are provided. A method is provided for a hybrid cache system that dynamically changes modes of one or more cache rows of a cache between an un-split mode having a first tag field and a first data field to a split mode having a second tag field, a second data field being smaller than the first data field and a mapped page field to improve the cache access efficiency of a workflow being executed in a processor. A hybrid cache system is provided in which the cache is configured to operate one or more cache rows in an un-split mode or in a split mode. The system is configured to dynamically change modes of the cache rows from the un-split mode to the split mode to improve the cache access efficiency of a workflow being executed by the processor.
Abstract:
The described embodiments include a memory with a memory array and logic circuits. In these embodiments, logical operations are performed on data from the memory array by reading the data from the memory array, performing a logical operation on the data in the logic circuits, and writing the data back to the memory array. In these embodiments, the logic circuit is located in the memory so that the data read from the memory array need not be sent to another circuit (e.g., a processor coupled to the memory, etc.) to have the logical operation performed.
Abstract:
A die-stacked memory device incorporates a reconfigurable logic device to provide implementation flexibility in performing various data manipulation operations and other memory operations that use data stored in the die-stacked memory device or that result in data that is to be stored in the die-stacked memory device. One or more configuration files representing corresponding logic configurations for the reconfigurable logic device can be stored in a configuration store at the die-stacked memory device, and a configuration controller can program a reconfigurable logic fabric of the reconfigurable logic device using a selected one of the configuration files. Due to the integration of the logic dies and the memory dies, the reconfigurable logic device can perform various data manipulation operations with higher bandwidth and lower latency and power consumption compared to devices external to the die-stacked memory device.
Abstract:
Methods, systems and computer readable storage mediums for more efficient and flexible scheduling of tasks on an asymmetric processing system having at least one host processor and one or more slave processors, are disclosed. An example embodiment includes, determining a data access requirement of a task, comparing the data access requirement to respective local memories of the one or more slave processors selecting a slave processor from the one or more slave processors based upon the comparing, and running the task on the selected slave processor.
Abstract:
A memory accessing agent includes a memory access generating circuit and a memory controller. The memory access generating circuit is adapted to generate multiple memory accesses in a first ordered arrangement. The memory controller is coupled to the memory access generating circuit and has an output port, for providing the multiple memory accesses to the output port in a second ordered arrangement based on the memory accesses and characteristics of an external memory. The memory controller determines the second ordered arrangement by calculating an efficient row burst value and interrupting multiple row-hit requests to schedule a row-miss request based on the efficient row burst value.
Abstract:
A system and method for efficiently limiting storage space for data with particular properties in a cache memory. A computing system includes a cache array and a corresponding cache controller. The cache array includes multiple banks, wherein a first bank is powered down. In response a write request to a second bank for data indicated to be stored in the powered down first bank, the cache controller determines a respective bypass condition for the data. If the bypass condition exceeds a threshold, then the cache controller invalidates any copy of the data stored in the second bank. If the bypass condition does not exceed the threshold, then the cache controller stores the data with a clean state in the second bank. The cache controller writes the data in a lower-level memory for both cases.
Abstract:
A die-stacked memory device incorporates a reconfigurable logic device to provide implementation flexibility in performing various data manipulation operations and other memory operations that use data stored in the die-stacked memory device or that result in data that is to be stored in the die-stacked memory device. One or more configuration files representing corresponding logic configurations for the reconfigurable logic device can be stored in a configuration store at the die-stacked memory device, and a configuration controller can program a reconfigurable logic fabric of the reconfigurable logic device using a selected one of the configuration files. Due to the integration of the logic dies and the memory dies, the reconfigurable logic device can perform various data manipulation operations with higher bandwidth and lower latency and power consumption compared to devices external to the die-stacked memory device.
Abstract:
The described embodiments include a cache controller with a prediction mechanism in a cache. In the described embodiments, the prediction mechanism is configured to perform a lookup in each table in a hierarchy of lookup tables in parallel to determine if a memory request is predicted to be a hit in the cache, each table in the hierarchy comprising predictions whether memory requests to corresponding regions of a main memory will hit the cache, the corresponding regions of the main memory being smaller for tables lower in the hierarchy.