Abstract:
A semiconductor device structure is disclosed including a semiconductor-on-insulator (SOI) substrate, the SOI substrate comprising a semiconductor layer, a substrate material and a buried insulating material layer positioned between the semiconductor layer and the substrate material, a trench isolation structure positioned in at least a portion of the SOI substrate, the trench isolation structure defining a first region in the SOI substrate, and a capacitor device formed in the first region, the capacitor device comprising a first electrode formed by a conductive layer portion formed in the first region on the buried insulating material layer, the conductive layer portion at least partially replacing the semiconductor layer in the first region, a second electrode formed over the first electrode, and an insulating material formed between the first electrode and the second electrode.
Abstract:
A method of forming matched PFET/NFET spacers with differential widths for SG and EG structures and a method of forming differential width nitride spacers for SG NFET and SG PFET structures and PFET/NFET EG structures and respective resulting devices are provided. Embodiments include providing PFET SG and EG structures and NFET SG and EG structures; forming a first nitride layer over the substrate; forming an oxide liner; forming a second nitride layer on sidewalls of the PFET and NFET EG structures; removing horizontal portions of the first nitride layer and the oxide liner over the PFET SG and EG structures; forming RSD structures on opposite sides of each of the PFET SG and EG structures; removing horizontal portions of the first nitride layer and the oxide liner over the NFET SG and EG structures; and forming RSD structures on opposite sides of each of the NFET SG and EG structures.
Abstract:
A semiconductor device is provided including a fully depleted silicon-on-insulator (FDSOI) substrate and a charge pump device, wherein the FDSOI substrate comprises a semiconductor bulk substrate, and the charge pump device comprises a transistor device formed in and on the FDSOI substrate, and a trench capacitor formed in the semiconductor bulk substrate and electrically connected to the transistor device. A semiconductor device is further provided including a semiconductor bulk substrate, a first transistor device comprising a first source/drain region, a second transistor device comprising a second source/drain region, a first trench capacitor comprising a first inner capacitor electrode and a first outer capacitor electrode, and a second trench capacitor comprising a second inner capacitor electrode and a second outer capacitor electrode, wherein the first inner capacitor electrode is connected to the first source/drain region and the second inner capacitor electrode is connected to the second source/drain region.
Abstract:
A method of manufacturing a semiconductor device is provided including providing a semiconductor substrate, forming a first plurality of semiconductor fins in a logic area of the semiconductor substrate, forming a second plurality of semiconductor fins in a memory area of the semiconductor substrate, forming an insulating layer between the fins of the first plurality of semiconductor fins and between the fins of the second plurality of semiconductor fins, forming an electrode layer over the first and second pluralities of semiconductor fins and the insulating layer, forming gates over semiconductor fins of the first plurality of semiconductor fins in the logic area from the gate electrode layer, and forming sense gates and control gates between semiconductor fins of the second plurality of semiconductor fins in the logic area from the gate electrode layer.
Abstract:
A method of forming a semiconductor device is disclosed including providing a silicon-on-insulator substrate comprising a semiconductor bulk substrate, a buried oxide layer formed on the semiconductor bulk substrate and a semiconductor layer formed on the buried oxide layer, and forming a transistor device on the silicon-on-insulator substrate including providing a gate structure on the semiconductor layer having a gate electrode and a first cap layer on the gate electrode, growing an oxide liner on the transistor device having a first part covering the gate structure and a second part covering the semiconductor layer, forming a second cap layer on the oxide liner, at least partially removing the second part of the oxide liner underneath the second cap layer and the first part of the oxide liner, and epitaxially forming raised source/drain regions on the semiconductor layer.
Abstract:
A method of forming a semiconductor device comprising a fuse is provided including providing a semiconductor-on-insulator (SOI) structure comprising an insulating layer and a semiconductor layer formed on the insulating layer, forming raised semiconductor regions on the semiconductor layer adjacent to a central portion of the semiconductor layer and performing a silicidation process of the central portion of the semiconductor layer and the raised semiconductor regions to form a silicided semiconductor layer and silicided raised semiconductor regions.
Abstract:
A semiconductor device includes an active region formed in a semiconductor substrate, a gate structure disposed over the active region, source/drain regions formed in the active region in alignment with the gate structure, and a buried insulating material region disposed in the active region under the gate structure. The buried insulating material region is surrounded by the active region and borders a channel region in the active region below the gate structure along a depth of the active region. The source/drain regions have a depth greater than a top surface of the buried insulating material region.
Abstract:
A method of forming a semiconductor device is provided including providing a semiconductor-on-insulator (SOI) wafer comprising a first semiconductor layer comprising a first material component and formed on a buried oxide (BOX) layer, and forming a channel region of a P-channel transistor device, including forming a second semiconductor layer only over a first portion of the first semiconductor layer, wherein the second semiconductor layer comprises the first material component and a second material component different from the first material component, forming an opening in the first semiconductor layer outside the first portion and subsequently performing a thermal anneal to push the second material component from the second semiconductor layer into the first semiconductor layer.
Abstract:
A semiconductor device includes an active region formed in a semiconductor substrate, a gate structure disposed over the active region, source/drain regions formed in the active region in alignment with the gate structure, and a buried insulating material region disposed in the active region under the gate structure. The buried insulating material region is surrounded by the active region and borders a channel region in the active region below the gate structure along a depth of the active region. The source/drain regions have a depth greater than a top surface of the buried insulating material region.
Abstract:
A method of forming a semiconductor device structure includes providing a substrate with a semiconductor-on-insulator (SOI) configuration, the SOI substrate comprising a semiconductor layer formed on a buried oxide (BOX) layer which is disposed on a semiconductor bulk substrate, forming trench isolation structures delineating a first region and a second region within the SOI substrate, removing the semiconductor layer and the BOX layer in the first region for exposing the semiconductor bulk substrate within the first region, forming a first semiconductor device with an electrode in and over the exposed semiconductor bulk substrate in the first region, forming a second semiconductor device in the second region, the second semiconductor device comprising a gate structure disposed over the semiconductor layer and the BOX layer in the second region, and performing a polishing process for defining a common height level to which the electrode and the gate structure substantially extend.