Abstract:
A dielectric resonant component includes at least one dielectric multistage resonator including one dielectric block, a plurality of inner conductor formation holes formed in the one dielectric block, an inner conductor formed on an inner surface of each of the inner conductor formation holes, and an outer conductor covering a substantially entire outer surface of the one dielectric block, the dielectric multistage resonator constituting a plurality of dielectric resonators in the one dielectric block; and a mount substrate fixedly mounted on the dielectric multistage resonator, for transmitting a signal transmission between each of the dielectric resonators of the dielectric multistage resonator and an external circuit board, when the dielectric resonant component is mounted on the external circuit board. The dielectric multistage resonator further includes a pair of input/output electrodes, and the mount substrate includes a unit for connecting the input/output electrodes of the dielectric multistage resonator to a pair of input/output electrodes formed on the circuit board.
Abstract:
A compact dielectric resonator apparatus is comprised of a dielectric block having a plurality of mutually parallel throughholes formed therethrough with inner surfaces covered with a conductive film so as to provide coaxial resonators. The degree of coupling between a mutually adjacent pair of such dielectric resonators can be adjusted by forming grooves, a bottomed hole or a slit or burying a conductive plate therebetween in the dielectric block, and varying physical characteristics of such grooves, bottomed hole, slit and/or conductive plate, without changing the separations between the throughholes or the external dimensions of the dielectric block.
Abstract:
A semiconductor laser device element substrate includes a plurality of semiconductor laser device elements arranged in an array on a semiconductor substrate, the array including a plurality of rows and a plurality of columns, laser resonator facets being located at the boundaries between respective rows of the semiconductor laser device elements, and element separation guiding grooves, for guiding separation of the substrate into a plurality of divided semiconductor laser devices, the grooves being located at the boundaries between the semiconductor laser device elements of the respective columns, wherein the element separation guiding grooves are arranged at positions on different straight lines running in the column direction for each group at least two adjacent rows. Therefore, even if some forces are applied to the substrate, the forces are not concentrated on a point, whereby wafer cracking can be prevented.
Abstract:
In a method for producing a semiconductor device, a first semiconductor layer is epitaxially grown on a semiconductor substrate, an insulating film pattern is formed on the first semiconductor layer, and portions of the first semiconductor layer are removed by wet etching using the insulating film pattern as a mask to leave a ridge having a reverse mesa shape and a width. Ends of the insulating film pattern are removed by etching to approximately the width of the ridge, a second semiconductor layer is epitaxially grown on opposite sides of the ridge, and a third semiconductor layer is epitaxially grown on the ridge and the second semiconductor layer. The second semiconductor layer is evenly grown without concave portions at opposite sides of the ridge. In addition, the third semiconductor layer is evenly grown on the ridge and the second semiconductor layer, and an electrode reliably connects the surface of the third semiconductor layer. A semiconductor device with good performance and high reliability is reproducibly manufactured.
Abstract:
In a semiconductor laser device a dual wavelength semiconductor laser chip is joined onto a submount, junction down, to reduce built-in stress produced between the laser chip and the submount and to decrease polarization angles of the two respective lasers. SnAg solder is used to join the dual wavelength semiconductor laser chip onto the submount. When joining, with respect to each of the two lasers, a ratio of a distance between the center line of a waveguide and an end, placed at a lateral side of the laser chip, of a portion joining the laser chip and the submount, to a distance between the center line of the waveguide and another end, placed toward the center of the laser chip, of the portion joining the laser chip and the submount, falls within a range of 0.69 to 1.46.
Abstract:
A method of forming a dielectric resonator from an inner-conductor-formed hole that has a substantially rectangular or substantially elliptical cross section in a direction perpendicular to the depth direction thereof, by placing a rotary cutting disk in contact with the edge of the opening of the inner-conductor-formed hole, and removing portions of an outer conductor and the inner conductor in the contact portion with the rotary cutting disk, thereby separating the inner conductor and the outer conductor.
Abstract:
A semiconductor laser is provided which emits laser light in which the intensity center of the far-field pattern in the horizontal direction does not vary with variation of the optical output and in which the shape of the far-field pattern in the horizontal direction is stable. The width of trenches is determined so that the magnitude (E1) of the electric field at the center of a ridge and the magnitude (E2) of the electric field at the edges of the trenches provide. a ratio E1/E2 that is larger than 0.0001 and smaller than 0.01. In a semiconductor laser with a double-channel ridge structure, layers having a larger equivalent refractive index than the trenches exist outside the trenches. Accordingly, the semiconductor absorbs the light distributed outside the trenches and it is possible to obtain laser light in which the intensity center of the far-field pattern in the horizontal direction does not vary with variation of the optical output and in which the shape of the far-field pattern in the horizontal direction is stable.
Abstract:
A dielectric filter provided with a dielectric block including at least four resonant through holes that are adjacent to each other. A multipath slot is arranged near three adjacent through holes of the at least four resonant through holes. The multipath slot has an inner conductor formed on an inner surface thereof in order to generate a first capacitance between a first area near the open end of each of the three adjacent through holes and the inner conductor of the multipath slot. A step is formed so that a second capacitance is generated between a second area near the open end of each of two through holes of the at least four resonant through holes and an outer conductor located within the step. An attenuation peak is generated at the lower-frequency side of the passband with the multipath slot and the three adjacent through holes, and an attenuation peak is generated at the higher-frequency side of the passband with the two through holes and the outer conductor within the step.
Abstract:
A dielectric filter includes a dielectric block having a plurality of through holes; an outer conductor provided on an outer surface of the dielectric block; and inner conductors provided on inner surfaces of the plurality of through holes. The dielectric filter also includes a first dielectric provided between the respective inner conductors and the outer conductor; and at least one second dielectric provided between the inner conductors of two adjacent through holes. The temperature coefficient of the resonant frequency of the first dielectric is different from that of the second dielectric. If inductive coupling between the adjacent resonators generates an attenuation pole at a frequency higher than a pass band, the temperature coefficient of the resonant frequency of the first dielectrics is set to a predetermined positive value, and the temperature coefficient of the resonant frequency of the second dielectric is set to a predetermined negative value.
Abstract:
An integrated surface emitting laser and light amplifier element having a high power output, and a large variable wavelength includes a surface light emitting laser having an active layer between two reflection films facing each other and a light amplifier including an amplifying active layer for amplifying a laser beam produced by the surface light emitting laser. The surface light emitting laser and the light amplifier are integrated on the same substrate.