摘要:
A bond pad for effecting through-wafer connections to an integrated circuit or electronic package and method of producing thereof. The bond pad includes a high surface area aluminum bond pad in order to resultingly obtain a highly reliable, low resistance connection between bond pad and electrical leads.
摘要:
An imaging sensor with an array of FET pixels and method of forming the imaging sensor. Each pixel is a semiconductor island, e.g., N-type silicon on a Silicon on insulator (SOI) wafer. FETs are formed in one photodiode electrode, e.g., a P-well cathode. A color filter may be attached to an opposite surface of island. A protective layer (e.g., glass or quartz) or window is fixed to the pixel array at the color filters. The image sensor may be illuminated from the backside with cell wiring above the cell. So, an optical signal passes through the protective layer is filtered by the color filters and selectively sensed by a corresponding photo-sensor.
摘要:
An imaging system for use in a digital camera or cell phone utilizes one chip for logic and one chip for image processing. The chips are interconnected using around-the-edge or through via conductors extending from bond pads on the active surface of the imaging chip to backside metallurgy on the imaging chip. The backside metallurgy of the imaging chip is connected to metallurgy on the active surface of the logic chip using an array of solder bumps in BGA fashion. The interconnection arrangement provides a CSP which matches the space constraints of a cell phone, for example. The arrangement also utilizes minimal wire lengths for reduced noise. Connection of the CSP to a carrier package may be either by conductive through vias or wire bonding. The CSP is such that the imaging chip may readily be mounted across an aperture in the wall of a cell phone, for example, so as to expose the light sensitive pixels on the active surface of said imaging chip to light.
摘要:
An imaging system for use in a digital camera or cell phone utilizes one chip for logic and one chip for image processing. The chips are interconnected using around-the-edge or through via conductors extending from bond pads on the active surface of the imaging chip to backside metallurgy on the imaging chip. The backside metallurgy of the imaging chip is connected to metallurgy on the active surface of the logic chip using an array of solder bumps in BGA fashion. The interconnection arrangement provides a CSP which matches the space constraints of a cell phone, for example. The arrangement also utilizes minimal wire lengths for reduced noise. Connection of the CSP to a carrier package may be either by conductive through vias or wire bonding. The CSP is such that the imaging chip may readily be mounted across an aperture in the wall of a cell phone, for example, so as to expose the light sensitive pixels on the active surface of said imaging chip to light.
摘要:
An imaging system for use in a digital camera or cell phone utilizes one chip for logic and one chip for image processing. The chips are interconnected using around-the-edge or through via conductors extending from bond pads on the active surface of the imaging chip to backside metallurgy on the imaging chip. The backside metallurgy of the imaging chip is connected to metallurgy on the active surface of the logic chip using an array of solder bumps in BGA fashion. The interconnection arrangement provides a CSP which matches the space constraints of a cell phone, for example. The arrangement also utilizes minimal wire lengths for reduced noise. Connection of the CSP to a carrier package may be either by conductive through vias or wire bonding. The CSP is such that the imaging chip may readily be mounted across an aperture in the wall of a cell phone, for example, so as to expose the light sensitive pixels on the active surface of said imaging chip to light.
摘要:
An imaging system for use in a digital camera or cell phone utilizes one chip for logic and one chip for image processing. The chips are interconnected using around-the-edge or through via conductors extending from bond pads on the active surface of the imaging chip to backside metallurgy on the imaging chip. The backside metallurgy of the imaging chip is connected to metallurgy on the active surface of the logic chip using an array of solder bumps in BGA fashion. The interconnection arrangement provides a CSP which matches the space constraints of a cell phone, for example. The arrangement also utilizes minimal wire lengths for reduced noise. Connection of the CSP to a carrier package may be either by conductive through vias or wire bonding. The CSP is such that the imaging chip may readily be mounted across an aperture in the wall of a cell phone, for example, so as to expose the light sensitive pixels on the active surface of said imaging chip to light.
摘要:
An image sensor and method of fabrication wherein the sensor includes Copper (Cu) metallization levels allowing for incorporation of a thinner interlevel dielectric stack to result in a pixel array exhibiting increased light sensitivity. The image sensor includes structures having a minimum thickness of barrier layer metal that traverses the optical path of each pixel in the sensor array or, that have portions of barrier layer metal selectively removed from the optical paths of each pixel, thereby minimizing reflectance. That is, by implementing various block or single mask methodologies, portions of the barrier layer metal are completely removed at locations of the optical path for each pixel in the array. In a further embodiment, the barrier metal layer may be formed atop the Cu metallization by a self-aligned deposition.
摘要:
An electronic packaging having at least one bond pad positioned on a chip for effectuating through-wafer connections to an integrated circuit. The electronic package is equipped with an edge seal between the bond pad region and an active circuit region, and includes a crack stop, which is adapted to protect the arrangement from the entry of deleterious moisture and combination into the active regions of the chip containing the bond pads.
摘要:
A method of forming a CMOS active pixel sensor (APS) cell structure having at least one transfer gate device and method of operation. A first transfer gate device comprises a diodic or split transfer gate conductor structure having a first doped region of first conductivity type material and a second doped region of a second conductivity type material. A photosensing device is formed adjacent the first doped region for collecting charge carriers in response to light incident thereto, and, a diffusion region of a second conductivity type material is formed at or below the substrate surface adjacent the second doped region of the transfer gate device for receiving charges transferred from the photosensing device while preventing spillback of charges to the photosensing device upon timed voltage bias to the diodic or split transfer gate conductor structure. Alternately, an intermediate charge storage device and second transfer gate device may be provided which may first temporarily receive charge carriers from the photosensing device, and, upon activating the second transfer gate device in a further timed fashion, read out the charge stored at the intermediate charge storage device for transfer to the second transfer gate device while preventing spillback of charges to the photosensing device. The APS cell structure is further adapted for a global shutter mode of operation, and further comprises a light shield element is further provided to ensure no light reaches the photosensing and charge storage devices during charge transfer operation.
摘要:
A multiple precipitation doping process for doping a semiconductor substrate (30) starts with forming an amorphous region (32) in the substrate (30). Through multiple laser exposures, multiple dopant precipitation films (52, 53) are formed on corresponding portions (34, 37) of the major surface (31) of the substrate (30) overlying the amorphous region (32). The substrate (30) is then annealed. The annealing process melts the amorphous region (32) and allows the dopants precipitated on the major surface (31) to diffuse into the substrate (30). The annealing process also crystallizes the semiconductor material the amorphous region (32). The substrate (30) becomes a single crystal semiconductor substrate with multiple doped regions (54, 57) therein. The depth of the doped regions (54, 57) is substantially equal to the depth of the amorphous region (32) before annealing.