摘要:
A method for fabricating an edge termination, which can be used in conjunction with GaN-based materials, includes providing a substrate of a first conductivity type. The substrate has a first surface and a second surface. The method also includes forming a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the substrate and forming a second GaN epitaxial layer of a second conductivity type opposite to the first conductivity type. The second GaN epitaxial layer is coupled to the first GaN epitaxial layer. The substrate, the first GaN epitaxial layer and the second GaN epitaxial layer can be referred to as an epitaxial structure.
摘要:
A semiconductor device includes a III-nitride substrate of a first conductivity type, a first III-nitride epitaxial layer of the first conductivity type coupled to the III-nitride substrate, and a first III-nitride epitaxial structure coupled to a first portion of a surface of the first III-nitride epitaxial layer. The first III-nitride epitaxial structure has a sidewall. The semiconductor device further includes a second III-nitride epitaxial structure of the first conductivity type coupled to the first III-nitride epitaxial structure, a second III-nitride epitaxial layer of the first conductivity type coupled to the sidewall of the second III-nitride epitaxial layer and a second portion of the surface of the first III-nitride epitaxial layer, and a third III-nitride epitaxial layer of a second conductivity type coupled to the second III-nitride epitaxial layer. The semiconductor device also includes one or more dielectric structures coupled to a surface of the third III-nitride epitaxial layer.
摘要:
A semiconductor device includes a III-nitride substrate of a first conductivity type, a first III-nitride epitaxial layer of the first conductivity type coupled to the III-nitride substrate, and a first III-nitride epitaxial structure coupled to a first portion of a surface of the first III-nitride epitaxial layer. The first III-nitride epitaxial structure has a sidewall. The semiconductor device further includes a second III-nitride epitaxial structure of the first conductivity type coupled to the first III-nitride epitaxial structure, a second III-nitride epitaxial layer of the first conductivity type coupled to the sidewall of the second III-nitride epitaxial layer and a second portion of the surface of the first III-nitride epitaxial layer, and a third III-nitride epitaxial layer of a second conductivity type coupled to the second III-nitride epitaxial layer. The semiconductor device also includes one or more dielectric structures coupled to a surface of the third III-nitride epitaxial layer.
摘要:
A semiconductor structure includes a GaN substrate with a first surface and a second surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. A first electrode is electrically coupled to the second surface of the GaN substrate. The semiconductor structure further includes a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the GaN substrate and a second GaN layer of a second conductivity type coupled to the first GaN epitaxial layer. The first GaN epitaxial layer comprises a channel region. The second GaN epitaxial layer comprises a gate region and an edge termination structure. A second electrode coupled to the gate region and a third electrode coupled to the channel region are both disposed within the edge termination structure.
摘要:
A semiconductor structure includes a GaN substrate with a first surface and a second surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. A first electrode is electrically coupled to the second surface of the GaN substrate. The semiconductor structure further includes a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the GaN substrate and a second GaN layer of a second conductivity type coupled to the first GaN epitaxial layer. The first GaN epitaxial layer comprises a channel region. The second GaN epitaxial layer comprises a gate region and an edge termination structure. A second electrode coupled to the gate region and a third electrode coupled to the channel region are both disposed within the edge termination structure.
摘要:
A method of regrowing material includes providing a III-nitride structure including a masking layer and patterning the masking layer to form an etch mask. The method also includes removing, using an in-situ etch, a portion of the III-nitride structure to expose a regrowth region and regrowing a III-nitride material in the regrowth region.
摘要:
A method of regrowing material includes providing a III-nitride structure including a masking layer and patterning the masking layer to form an etch mask. The method also includes removing, using an in-situ etch, a portion of the III-nitride structure to expose a regrowth region and regrowing a III-nitride material in the regrowth region.
摘要:
A semiconductor structure includes a III-nitride substrate having a top surface and an opposing bottom surface and a first III-nitride layer of a first conductivity type coupled to the top surface of the III-nitride substrate. The semiconductor structure also includes a second III-nitride layer of a second conductivity type coupled to the first III-nitride layer along a vertical direction and a third III-nitride layer of a third conductivity type coupled to the second III-nitride layer along the vertical direction. The semiconductor structure further includes a first trench extending through a portion of the third III-nitride layer to the first III-nitride layer, a second trench extending through another portion of the third III-nitride layer to the second III-nitride layer, and a first metal layer coupled to the second and the third III-nitride layers.
摘要:
Embodiments of the invention generally relate to photovoltaic devices. In one embodiment, a method for forming a gallium arsenide based photovoltaic device includes providing a semiconductor structure, the structure including an absorber layer comprising gallium arsenide. A bypass function is provided in a p-n junction of the semiconductor structure, where under reverse-bias conditions the p-n junction breaks down in a controlled manner by a Zener breakdown effect.
摘要:
Embodiments generally relate to optoelectronic semiconductor devices such as solar cells. In one aspect, a device includes an absorber layer made of gallium arsenide (GaAs) and having only one type of doping. An emitter layer is located closer than the absorber layer to a back side of the device and is made of a different material and having a higher bandgap than the absorber layer. A heterojunction is formed between the emitter layer and the absorber layer, and a p-n junction is formed between the emitter layer and the absorber layer and at least partially within the different material at a location offset from the heterojunction. An intermediate layer is located between the absorber layer and the emitter layer and provides the offset of the p-n junction from the heterojunction, and includes a graded layer and an ungraded back window layer.