Abstract:
Methods and semiconductor circuits are described in which a polysilicon resistor body is formed over a semiconductor substrate. A first dopant species is implanted into the polysilicon resistor body at a first angle about parallel to a surface normal of a topmost surface of the polysilicon resistor body. A second dopant species is implanted into the polysilicon resistor body at a second angle greater than about 10° relative to the surface normal. The combination of implants reduces the different between the temperature coefficient (tempco) of resistance of narrow resistors relative to the tempco of wide resistors, and brings the tempco of the resistors closer to a preferred value of zero.
Abstract:
The present disclosure provides a method for adjusting implant parameter conditions in semiconductor processing by wafer and by wafer zone using in-line measurements from previous operations and a feed-forward computer model. The feed-forward model is based on a sensitivity map of in-line measured data and its effect of electrical performance. Feed-forward computer models that adjust implant parameters by wafer and by zone improve both wafer-to-wafer and within wafer electrical uniformity in semiconductor devices.
Abstract:
An electronic device, e.g. integrated circuit, has an n-type region and a p-type region located within a semiconductor substrate, the n-type region and the p-type region each intersecting the substrate surface. A dielectric structure is located directly on the substrate surface. The dielectric structure has first and second laterally opposed sides, with the first side located over the n-type region and the second side located over the p-type region.
Abstract:
A replacement metal gate transistor structure and method with thin silicon nitride sidewalls and with little or no high-k dielectric on the vertical sidewalls of the replacement gate transistor trench.
Abstract:
An integrated circuit contains a logic MOS transistor and a memory MOS transistor of a same polarity. The logic MOS transistor has a logic channel stop layer. The memory MOS transistor has a memory channel stop layer. An average dopant density of the memory channel stop layer is higher than an average dopant density of the logic channel stop layer. The integrated circuit is formed by forming a global mask which exposes both the logic and memory MOS transistors. A global channel stop dose of dopants is implanted in the logic and memory MOS transistors. A memory mask is formed which exposes the memory MOS transistor and covers the logic MOS transistor. A memory channel stop dose of dopants of the same polarity is implanted into the memory MOS transistors. The memory channel stop dose of dopants is blocked from the logic MOS transistors.
Abstract:
An integrated circuit and method with a metal gate NMOS transistor with a high-k first gate dielectric on a high quality thermally grown interface dielectric and with a metal gate PMOS transistor with a high-k last gate dielectric on a chemically grown interface dielectric.
Abstract:
An integrated circuit and method with a metal gate NMOS transistor with a high-k first gate dielectric on a high quality thermally grown interface dielectric and with a metal gate PMOS transistor with a high-k last gate dielectric on a chemically grown interface dielectric.
Abstract:
A replacement metal gate transistor structure and method with thin silicon nitride sidewalls and with little or no high-k dielectric on the vertical sidewalls of the replacement gate transistor trench.
Abstract:
An integrated circuit and method with a metal gate transistor and with a Schottky diode where the metal used to form the Schottky diode is the metal used to form the metal gate.
Abstract:
An integrated circuit with a shallow trench isolated, low capacitance, ESD protection diode. An integrated circuit with a gate space isolated, low capacitance, ESD protection diode. An integrated circuit with a gate space isolated, low capacitance, ESD protection diode in parallel with a shallow trench isolated, low capacitance, ESD protection diode.