摘要:
The invention relates to a galvanic cell (1) substantially prismatic in design, comprising an electrode stack (2) having at least one anode (3, 3a), one cathode (4, 4a), and one separator. The separator (5) is provided for at least partially receiving an electrolyte. The galvanic cell further comprises at least two housing parts (6, 7) at least partially enclosing the electrode stack. At least one assembly seam (8, 8a) connects the at least two housing parts at least in parts. The galvanic cell is characterized in that the at least one assembly seam is elastic in design.
摘要:
The invention relates to a battery receiving device comprising a battery receiving chamber and a wall at least partially enclosing the battery receiving chamber. The battery receiving device further comprises a closable first opening associated with the wall. The battery receiving device further comprises a battery holding device provided for holding at least one battery. The battery receiving device according to the invention is characterized in that the battery holding device thereof is configured such that the at least one battery is released under predetermined conditions.
摘要:
The invention relates to an electrode coil (3) having a substantially cylindrical shape, comprising at least: one anodic electrode (5), one cathodic electrode (6), and one separator (4) disposed at least partially between said electrodes (5, 6), characterized in that the separator (4) is produced from a material comprising at least one component made of a ceramic material.
摘要:
The invention relates to a contacting element (1) for electrically connecting a contact connection (18) of an electric cell, in particular a battery cell (22), comprising at least one deformation section (2) and at least two clamping edges (9) which are each supported at opposing end sections (4) of the at least one deformation section (2).
摘要:
The invention relates to a battery management system (10) for monitoring and controlling of at least one device (14, 14′), which works according to galvanic principles, in particular a lithium-ion accumulator with at least one lithium-ion cell (14a, 14b, 14c, . . . ; 14a′, 14b′, 14c′, . . . ). The system (10) comprises: A central control device (16), a program storage device (18) in operational connection with the central control device (16), at least one data storage device (20) in operational connection with the central control device (16), at least one sensor interface device (22) operationally connected to the central control device (16) for monitoring of such function parameters of at least one lithium-ion cell of the device (14), which works according to galvanic principles, and configured for operationally connecting with at least one external sensor device (26a, 26b, 26c, . . . ) for measuring at least one function parameter of a respective lithium-ion cell, at least one import device (44a, 44b, 44c, . . . ) in operational connection with the central control device (16) and configured for importing of at least one operation parameter of an assigned lithium-ion cell (14a, 14b, 14c, . . . ; 14a′, 14b′, 14c′, . . . ). According to the invention, the central control device (16), the at least one program storage device (18), the at least one data storage device (20), the at least one sensor interface device (22) and the at least one import device (44a, 44b, 44c, . . . ) are integrated into one integrated circuit (12).
摘要:
The present invention relates to a method for coating substrates, comprising the steps of: a) preparing a substrate, b) applying a composition onto at least one side of the substrate, the composition containing an inorganic compound, the inorganic compound containing at least one metal and/or semimetal selected from the group Sc, Y, Ti, Zr, Nb, V, Cr, Mo, W, Mn, Fe, Co, B, Al, In, Tl, Si, Ge, Sn, Zn, Pb, Sb, Bi or mixtures thereof and at least one element selected from the group Te, Se, S, O, Sb, As, P, N, C, Ga or mixtures thereof, and an electrically conductive substance selected from metals, particulate metals, metal alloys, particulate metal alloys, conductive compounds containing carbon or mixtures thereof, c) drying the composition applied in step b), d) applying at least one coating onto the at least one side of the substrate onto which the composition was applied in step b), the coating containing a silane of the general formula (Z1)Si(OR)3, where Z1 is R, OR or Gly (Gly=3-glycidyloxypropyl) and R is an alkyl radical having from 1 to 18 carbon atoms and all R may be identical or different, oxide particles selected from the oxides of Ti, Si, Zr, Al, Y, Sn, Zn, Ce or mixtures thereof, and an initiator, the coating preferably containing 3-aminopropyltrimethoxysilane and/or 3-aminopropyltriethoxysilane and/or N-2-aminoethyl-3-aminopropyltrimethoxysilane, and e) drying the coating applied in step d), as well as to the coated substrate.
摘要:
An electroluminescent unit, containing a) an energy source; b) an electronic drive; and c) at least one electroluminescent film in a transparent sheath are useful in illuminated articles, in particular transport containers and items for everyday use.
摘要:
A gas phase process for the production of titanium dioxide powders having well-controlled crystalline and surface area characteristics is disclosed. In this process, which is preferably carried out in a laminar diffusion flame reactor, vapor phase TiCl.sub.4 and oxygen are mixed in a reaction area which is heated externally. The titanium dioxide powder formed is then collected. It is preferred that the heat source used be a hydrocarbon fueled (e.g., methane) flame. Optionally, a vapor phase dopant (such as SiCl.sub.4) may be added to the reaction mixture to desirably affect the physical properties of the titanium dioxide produced. In a particularly preferred embodiment, a corona electric field is positioned across the area where the combustion reaction takes place (i.e., the reaction area). High anatase, high surface area titanium dioxide powders made by this process are excellent photocatalysts. The products of this process and the use of those products as photocatalysts are also disclosed. This process is also useful for producing other ceramic powders (such as silicon dioxide and tin oxide), as well as pure metallic or alloy powders.
摘要:
The present invention relates to a cathodic electrode for an electrochemical cell, comprising at least one carrier having at least one active material applied or deposited thereon, wherein the active material either comprises: (1) at least one lithium polyanion compound; or (2) a mixture made of a lithium/nickel/manganese/cobalt mixed oxide (NMC), which is not present in a Spinell structure, and a lithium manganese oxide (LMO) in a Spinell structure; or (3) a mixture of (1) and (2), wherein the carrier comprises a metallic material, in particular aluminum, and has a thickness of 15 μm to 45 μm, in particular an electrochemical cell having a high energy density. The present active material allows not only the energy density, but also the stability of the cell to be optimized. Furthermore, material costs and availability of materials are taken into consideration.
摘要:
A negative electrode for an electrochemical device comprises an active layer which forms a porous outer surface, the outer surface of the active layer being at least partially coated with nanoparticles, and/or an active layer which is at least partially covered by a porous functional layer at least an outer surface whereof is at least partially covered with nanoparticles. Also disclosed is a separator composite material for separating electrodes in an electrochemical device, comprising an essentially self-supporting support layer and a porous functional layer on at least one side of the support layer. An outer surface of the support layer is at least partially coated with nanoparticles on at least one side thereof. This Abstract is not intended to define the invention disclosed in the specification, nor intended to limit the scope of the invention in any way.