Abstract:
The present invention provides a method for forming a semiconductor structure, comprising: firstly, a substrate is provided, having a first fin structure and a second fin structure disposed thereon, next, a first isolation region is formed between the first fin structure and the second fin structure, a second isolation region is formed opposite the first fin structure from the first isolation region, and at least an epitaxial layer is formed on the side of the first fin structure and the second fin structure, wherein the epitaxial layer has a bottom surface, the bottom surface extending from the first fin structure to the second fin structure, and the bottom surface is lower than a bottom surface of the first isolation region and a top surface of the second isolation region, in addition, the epitaxial layer has a stepped-shaped sidewall profile.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a first region, a second region, and a third region; forming a plurality of spacers on the first region, the second region, and the third region; forming a first patterned mask to cover the spacers on the first region and the second region; and removing the spacers on the third region.
Abstract:
A method of removing a hard mask on a gate includes forming a first gate structure and a second gate structure. The first gate structure includes a first gate, a first hard mask disposed on the first gate and a first spacer surrounding the first gate and the first hard mask, wherein the second gate structure includes a second gate, a second hard mask disposed on the second gate and a second spacer surrounding the second gate and the second hard mask. Later, the first spacer surrounding the first hard mask and the second spacer surrounding the second hard mask are removed. After that, a dielectric layer is formed to cover the first hard mask and the second hard mask. Finally, the second dielectric layer, the first mask layer and the second mask layer are removed.
Abstract:
A nanowire transistor device includes a substrate, a plurality of nanowires formed on the substrate, and a gate surrounding at least a portion of each nanowire. The nanowires respectively include a first semiconductor core and a second semiconductor core surrounding the first semiconductor core. A lattice constant of the second semiconductor core is different from a lattice constant of the first semiconductor core.
Abstract:
A method of forming a semiconductor device includes following steps. Firstly, a substrate having a transistor is provided, where the transistor includes a source/drain region. A dielectric layer is formed on the substrate, and a contact plug is formed in the dielectric layer to electrically connect the source/drain region. Next, a mask layer is formed on the dielectric layer, where the mask layer includes a first layer and a second layer stacked thereon. After this a slot-cut pattern is formed on the second layer of the mask layer, and a contact slot pattern is formed on the first layer of the mask layer. Finally, the second layer is removed and a contact opening is formed by using the contact slot pattern on the first layer.
Abstract:
A manufacturing method of a semiconductor structure is provided. The manufacturing method includes the following steps. A substrate is provided. A fin structure and an inter-layer dielectric layer are formed on the substrate. A plurality of gate structures is formed on the substrate. A cap layer is formed on the gate structures. A hard mask is formed on the cap layer. A first patterned photoresist layer covering the gate structures is formed on the hard mask. The hard mask is etched and patterned to form a patterned hard mask, such that the patterned hard mask covers the gate structures. A second patterned photoresist layer including a plurality of openings corresponding to the fin structure is formed on the patterned hard mask. The cap layer and the inter-layer dielectric layer are etched to form a plurality of first trenches exposing part of the fin structure.
Abstract:
A method for forming a fin-shaped structure includes the following steps. A pad layer is formed on a substrate. A sacrificial pattern is formed on the pad layer. A spacer is formed on the pad layer beside the sacrificial pattern, wherein the ratio of the height of the spacer to the pad layer is larger than 5. The sacrificial pattern is removed. The layout of the spacer is transferred to the substrate to form at least a fin-shaped structure having a taper profile in the substrate.
Abstract:
A method of gap filling includes providing a substrate having a plurality of gaps formed therein. Then, an in-situ steam generation oxidation is performed to form an oxide liner on the substrate. The oxide liner is formed to cover surfaces of the gaps. Subsequently, a high aspect ratio process is performed to form an oxide protecting layer on the oxide liner. After forming the oxide protecting layer, a flowable chemical vapor deposition is performed to form an oxide filling on the oxide protecting layer. More important, the gaps are filled up with the oxide filling layer.
Abstract:
A fabrication method for a semiconductor structure at least includes the following steps. First, a pattern mask with a predetermined layout pattern is formed on a substrate. The layout pattern is then transferred to the underneath substrate so as to form at least a fin-shaped structure in the substrate. Subsequently, a shallow trench isolation structure is formed around the fin-shaped structure. Afterwards, a steam oxidation process is carried out to oxidize the fin-shaped structure protruding from the shallow trench isolation and to form an oxide layer on its surface. Finally, the oxide layer is removed completely.
Abstract:
A method of forming a semiconductor device is provided. A first interfacial material layer is formed by a deposition process on a substrate. A dummy gate material layer is formed on the first interfacial material layer. The dummy gate material layer and the first interfacial material layer are patterned to form a stacked structure. An interlayer dielectric (ILD) layer is formed to cover the stacked structure. A portion of the ILD layer is removed to expose a top of the stacked structure. The stacked structure is removed to form a trench in the ILD layer. A second interfacial layer and a first high-k layer are conformally foamed at least on a surface of the trench. A composite metal layer is formed to at least fill up the trench.