Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming a Micro-Electro-Mechanical System (MEMS) beam structure by venting both tungsten material and silicon material above and below the MEMS beam to form an upper cavity above the MEMS beam and a lower cavity structure below the MEMS beam.
Abstract:
Disclosed is an ultrasonic transducer that is provided with: a bottom electrode; an electric connection part which is connected to the bottom electrode from the bottom of the bottom electrode; a first insulating film which is formed so as to cover the bottom electrode; a cavity which is formed on the first insulating film so as to overlap the bottom electrode when seen from above; a second insulating film which is formed so as to cover the cavity; and a top electrode which is formed on the second insulating film so as to overlap the cavity when seen from above. The electric connection part to the bottom electrode is positioned so as to not overlap the cavity when seen from above.
Abstract:
Methods of fabricating an electromechanical systems device that mitigate permanent adhesion, or stiction, of the moveable components of the device are provided. The methods provide an amorphous silicon sacrificial layer with improved and reproducible surface roughness. The amorphous silicon sacrificial layers further exhibit excellent adhesion to common materials used in electromechanical systems devices.
Abstract:
A method of manufacturing an MEMS sensor according to the present invention includes the steps of: forming a first sacrificial layer on one surface of a substrate; forming a lower electrode on the first sacrificial layer; forming a second sacrificial layer made of a metallic material on the first sacrificial layer to cover the lower electrode; forming an upper electrode made of a metallic material on the second sacrificial layer; forming a protective film made of a nonmetallic material on the substrate to collectively cover the first sacrificial layer, the second sacrificial layer and the upper electrode; and removing at least the second sacrificial layer by forming a through-hole in the protective film and supplying an etchant to the inner side of the protective film through the through-hole.
Abstract:
Method for manufacturing a capacitor on a substrate, the capacitor including a first electrode (5) and a second electrode (12; 25), the first and second electrodes being separated by a cavity (16; 32), the substrate including an insulating surface layer (3), the first electrode (5) being arranged on the insulating surface layer a first metal body (7a; 20) being adjacent to the first electrode and arranged as anchor of the second electrode (12; 25) the second electrode being arranged as a beam-shaped body (12; 25) located on the first metal body and above the first electrode; the cavity (16; 32) being laterally demarcated by a sidewall of the first metal body.
Abstract:
Method for manufacturing a capacitor on a substrate, the capacitor including a first electrode (5) and a second electrode (12; 25), the first and second electrodes being separated by a cavity (16; 32), the substrate including an insulating surface layer (3), the first electrode (5) being arranged on the insulating surface layer a first metal body (7a; 20) being adjacent to the first electrode and arranged as anchor of the second electrode (12; 25) the second electrode being arranged as a beam-shaped body (12; 25) located on the first metal body and above the first electrode; the cavity (16; 32) being laterally demarcated by a sidewall of the first metal body.
Abstract:
Molded structures, methods of and apparatus for producing the molded structures are provided. At least a portion of the surface features for the molds are formed from multilayer electrochemically fabricated structures (e.g. fabricated by the EFAB™ formation process), and typically contain features having resolutions within the 1 to 100 μm range. The layered structure is combined with other mold components, as necessary, and a molding material is injected into the mold and hardened. The layered structure is removed (e.g. by etching) along with any other mold components to yield the molded article. In some embodiments portions of the layered structure remain in the molded article and in other embodiments an additional molding material is added after a partial or complete removal of the layered structure.
Abstract:
The object, to create a method for producing multilayers or multilayer systems wherein the structures generated on a substrate can easily be jointly detached from the substrate and are preserved in a composite, is achieved by the present invention by means of a method for producing implant structures comprising generating a first metal layer on a substrate, generating a second metal layer above the first metal layer, producing a number of multilayered implant structures above the second metal layer, removing the first metal layer between the substrate and the second metal layer, and releasing the implant structures from the substrate in a coherent composite. With the method according to the invention, between the implant structures and the substrate a release layer is generated consisting of two or three metal layers which serve as sacrificial layer in the course of releasing the fully processed multilayers by means of an under-etching process. As a result, a uniform and reliable separation of the finished multilayers from the substrate in a composite is achieved, facilitating the subsequent technology for assembly and interconnection of the implant structures.
Abstract:
A method for protecting a material of a microstructure comprising the material and a noble metal layer against undesired galvanic etching during manufacture, the method comprises forming on the structure a sacrificial metal layer having a lower redox potential than the material, the sacrificial metal layer being electrically connected to the noble metal layer.
Abstract:
In accordance with the present invention, accurate and easily controlled sloped walls may be formed using. AlN and preferably a heated TMAH for such purpose as the fabrication of MEMS devices, wafer level packaging and fabrication of fluidic devices. Various embodiments are disclosed.