摘要:
A method of manufacturing a vertical junction field effect transistor (JFET) includes forming a drain in a semiconductor substrate, forming a compound semiconductor epitaxial layer on the semiconductor substrate, and forming a source, a gate, a drift region, and a body diode all in the same compound semiconductor epitaxial layer. The drain is vertically spaced apart from the source and the gate by the drift region. The body diode is connected between the drain and the source.
摘要:
A method of manufacturing a semiconductor device that includes a junction field effect transistor, the junction field effect transistor including a semiconductor substrate of a first conductivity type, an epitaxial layer of the first conductivity type formed on the semiconductor substrate, a source region of the first conductivity type formed on a surface of the epitaxial layer, a channel region of the first conductivity type formed in a lower layer of the source region, a pair of trenches formed in the epitaxial layer so as to sandwich the source region therebetween, and a pair of gate regions of a second conductivity type, opposite to the first conductivity type, formed below a bottom of the pair of trenches.
摘要:
A vertical JFET made by a process using a limited number of masks. A first mask is used to form mesas and trenches in active cell and termination regions simultaneously. A maskless self-aligned process is used to form silicide source and gate contacts. A second mask is used to open windows to the contacts. A third mask is used to pattern overlay metallization. An optional fourth mask is used to pattern passivation. Optionally the channel may be doped via angled implantation, and the width of the trenches and mesas in the active cell region may be varied from those in the termination region.
摘要:
A vertical tunneling FET (TFET) provides low-power, high-speed switching performance for transistors having critical dimensions below 7 nm. The vertical TFET uses a gate-all-around (GAA) device architecture having a cylindrical structure that extends above the surface of a doped well formed in a silicon substrate. The cylindrical structure includes a lower drain region, a channel, and an upper source region, which are grown epitaxially from the doped well. The channel is made of intrinsic silicon, while the source and drain regions are doped in-situ. An annular gate surrounds the channel, capacitively controlling current flow through the channel from all sides. The source is electrically accessible via a front side contact, while the drain is accessed via a backside contact that provides low contact resistance and also serves as a heat sink. Reliability of vertical TFET integrated circuits is enhanced by coupling the vertical TFETs to electrostatic discharge (ESD) diodes.
摘要:
A method for producing a vertical semiconductor device includes providing a semiconductor substrate having a first surface and comprising an n-doped first semiconductor layer, forming a hard mask on the first surface, the hard mask comprising openings defining first zones in the n-doped first semiconductor layer, implanting acceptor ions of a first maximum energy through the hard mask into the first zones, replacing the hard mask by an inverted mask comprising openings that are substantially complementary to the openings of the hard mask; implanting acceptor ions of a second maximum energy different to the first maximum energy through the inverted mask into second zones of the n-doped first semiconductor layer, and carrying out at least one temperature step to activate the acceptor ions in the first zones and the second zones.
摘要:
A monolithic bi-directional device provides bi-directional power flow and bi-directional blocking of high-voltages. The device includes a first transistor having a first drain formed over a first channel layer that overlays a substrate, and a second transistor that includes a second drain formed over a second channel layer that overlays the substrate. The substrate forms a common source for both the first transistor and the second transistor.
摘要:
A method of manufacturing a vertical junction field effect transistor (JFET) includes forming a drain in a semiconductor substrate, forming a compound semiconductor epitaxial layer on the semiconductor substrate, and forming a source, a gate, a drift region, and a body diode all in the same compound semiconductor epitaxial layer. The drain is vertically spaced apart from the source and the gate by the drift region. The body diode is connected between the drain and the source.
摘要:
A JFET having a semiconductor substrate of a first doping type, an epitaxial layer of the first doping type located on the semiconductor substrate, a body region of a second doping type located in the epitaxial layer, a source region of the first doping type located in the epitaxial layer, a gate region of the second doping type located in the body region, and a shielding layer of the second doping type located in the epitaxial layer, wherein the semiconductor substrate is configured as a drain region, the shielding layer is in a conductive path formed between the source region and the drain region.
摘要:
A method for fabricating an edge termination structure includes providing a substrate having a first surface and a second surface and a first conductivity type, forming a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the substrate, and forming a second GaN epitaxial layer of a second conductivity type opposite to the first conductivity type. The second GaN epitaxial layer is coupled to the first GaN epitaxial layer. The method also includes implanting ions into a first region of the second GaN epitaxial layer to electrically isolate a second region of the second GaN epitaxial layer from a third region of the second GaN epitaxial layer. The method further includes forming an active device coupled to the second region of the second GaN epitaxial layer and forming the edge termination structure coupled to the third region of the second GaN epitaxial layer.
摘要:
A JFET has a semiconductor body with a first surface and second surface substantially parallel to the first surface. A source metallization and gate metallization are arranged on the first surface. A drain metallization is arranged on the second surface. In a sectional plane substantially perpendicular to the first surface, the semiconductor body includes: a first semiconductor region in ohmic contact with the source and drain metallizations, at least two second semiconductor regions in ohmic contact with the gate metallization, spaced apart from one another, and forming respective first pn-junctions with the first semiconductor region, and at least one body region forming a second pn-junction with the first semiconductor region. The at least one body region is in ohmic contact with the source metallization. At least a portion of the at least one body region is, in a projection onto the first surface, arranged between the two second semiconductor regions.