Abstract:
The Autonomous Rechargeable Heated Child's Mat is totally portable and forms an integrated yet detachable part of the child's pushchair, buggy or pram (or similar conveyance). Rechargeable embedded power cells power the system for over 4 hours at a full heat output. The system is fully controllable from the parent or operator's mobile telephone or tablet device via bidirectional wireless communication. Simply seat or lay the child in the pushchair, buggy or pram (or similar conveyance) as normal. Using a dedicated application on the mobile device the child will quickly and safely be warmed to a controlled temperature as set by the parent or operator. The longest of excursions can now be made with the child in complete comfort and warmth. A powerful, intelligent and safe mobile heating system that is simple to operate and control wirelessly with simplicity.
Abstract:
A secondary battery, in which working pressure and rupture pressure of a safety vent are effectively controlled with respect to a slope of the safety vent and shapes of rupturable grooves. The secondary battery includes an electrode assembly arranged within a can, a cap assembly coupled to the can and including a lower portion arranged above the electrode assembly and having a through-hole arranged at a center thereof, a safety vent electrically connected to the electrode assembly through the through-hole and an insulator arranged between the safety vent and the lower portion of the cap assembly, wherein a first distance between a portion of the safety vent arranged at a region near the through-hole and the lower portion of the cap assembly is smaller than a second distance between a portion of the safety vent positioned furthest from the through-hole and the lower portion of the cap assembly.
Abstract:
A nickel hydrogen rechargeable battery contains an electrode group made up of positive and negative electrode put together with a separator intervening therebetween. The positive electrode includes positive-electrode active material particles each having a base particle composed mainly of nickel hydroxide and a conductive layer that covers the surface of the base particle and is made from a Co compound containing Li. The negative electrode includes a rare earth-Mg—Ni-based hydrogen storage alloy containing a rare-earth element, Mg and Ni. The total amount of Li contained in the battery is in a range of from 15 to 50 (mg/Ah) on the condition that the Li is converted into LiOH, and that the total amount of Li is found as a mass per Ah of positive electrode capacity.
Abstract:
A battery pack including: a bare cell; a holder disposed at an end of the bare cell, having a connection groove on a side surface thereof; a protection circuit board seated in the holder; and an outer case disposed upon a side of the bare cell, having a connection protrusion mated with the connection groove, to secure the holder. Another battery pack includes: a bare cell including an electrode assembly and an cell case to accommodate the electrode assembly, including an outer casing and a inner casing, the cell case having a connection protrusion disposed at an edge of at least one of the outer and inner casings; a holder disposed at an end of the bare cell, having a connection groove to mate with the connection protrusion and thereby secure the holder; and a protection circuit board seated in the holder.
Abstract:
The performance of an ABx type metal hydride alloy is improved by adding an element to the alloy which element is operative to enhance the surface area morphology of the alloy. The alloy may include surface regions of differing morphologies.
Abstract:
A device for cooling a heat source of a motor vehicle is provided that includes a cooling body which has a plurality of feed flow channels and a plurality of return flow channels. At least a multiplicity of the feed flow channels and return flow channels are arranged adjacent to one another in an alternating fashion in the cooling body.
Abstract:
Energy storage arrangement with a rechargeable energy storage device, wherein the energy storage device includes a plurality of lithium-based storage elements. The energy storage device is composed of three lithium-based storage elements and one lithium titanate-based storage element, or four lithium-titanate-based storage elements and one lithium-based storage element, or three lithium-based storage elements and two nickel metal hydride-based storage elements.
Abstract:
A power source comprised of a first battery pack (e.g., a non-metal-air battery pack) and a second battery pack (e.g., a metal-air battery pack) is provided, wherein the second battery pack is only used as required by the state-of-charge (SOC) of the first battery pack or as a result of the user selecting an extended range mode of operation. Minimizing use of the second battery pack prevents it from undergoing unnecessary, and potentially lifetime limiting, charge cycles. The second battery pack may be used to charge the first battery pack or used in combination with the first battery pack to supply operational power to the electric vehicle.
Abstract:
A power source comprised of a first battery pack (e.g., a non-metal-air battery pack) and a second battery pack (e.g., a metal-air battery pack) is provided, wherein the second battery pack is used when the user selects an extended range mode of operation. Minimizing use of the second battery pack prevents it from undergoing unnecessary, and potentially lifetime limiting, charge cycles.