Abstract:
A method for controlling a rack system including a plurality of detachable chassis, where at lease one node is disposed in the chassis and a rack management controller (RMC) is disposed in the rack system. First, at least one detecting unit connected to the RMC and the node of the chassis in the rack system is provided. Next, a status message of the chassis is detected for determining whether the status of the chassis is changed. When the status is changed, the detecting unit determines whether the node corresponding to the chassis exists in the rack system. When the node exists, the detecting unit acquires a message of a field replaceable unit (FRU) of the node. Thereafter, the detecting unit transmits the message of the FRU to the RMC. Then, the RMC determines a type of the node according to the message of the FRU.
Abstract:
A control module, which is mounted on a handlebar of a bicycle, includes a base, a grip, a control bar, and a bolt. The base has a hole, and the hole has a first section and a second section, wherein the second section is bigger than the first section. The base is fitted to the handlebar whereby a sidewall of the first section touches the handlebar. The grip is fitted to the handlebar, and has a portion received in the second section of the hole of the base. The control bar is provided on the base to control a brake module or a derailleur module. The bolt is provided on the base, wherein both the base and the grip are fixed to the handlebar at the same time by tightening the bolt.
Abstract:
A method for thinning a wafer is provided. In one embodiment, a wafer is provided having a plurality of semiconductor chips, the wafer having a first side and a second side opposite the first side, wherein each of the chips includes a set of through silicon vias (TSVs), each of the TSVs substantially sealed by a liner layer and a barrier layer. A wafer carrier is provided for attaching to the second side of the wafer. The first side of the wafer is thinned and thereafer recessed to partially expose portions of the liner layers, barrier layers and the TSVs protruding from the wafer. An isolation layer is deposited over the first side of the wafer and the top portions of the liner layers, barrier layers and the TSVs. Thereafter, an insulation layer is deposited over the isolation layer. The insulation layer is then planarized to expose top portions of the TSVs. A dielectric layer is deposited over the planarized first side of the wafer. One or more electrical contacts are formed in the dielectric layer for electrical connection to the exposed one or more TSVs.
Abstract:
A water level and temperature alert device including a temperature sensor, a level sensor, an alert unit, and a computing unit. The computing unit is connected to the temperature sensor, the level sensor, and the alert unit. The level sensor is connected to a first electrode and a second electrode. When the first and second electrodes are shorted, the level sensor would output a triggering signal to the computing unit. As the computing unit is enabled by the triggering signal, the computing unit further attains a water temperature signal off the temperature sensor. According to the temperature range where the temperature signal falls into, the computing unit would trigger the alert unit to illuminate in different colors. The aforementioned alert device can further transmit the temperature and power level data to a remote host unit or communication device via a wireless technology.
Abstract:
MOSFETs having stacked metal gate electrodes and methods of making the same are provided. The MOSFET gate electrode includes a gate metal layer formed atop a high-k gate dielectric layer. The metal gate electrode is formed through a low oxygen content deposition process without charged-ion bombardment to the wafer substrate. Metal gate layer thus formed has low oxygen content and may prevent interfacial oxide layer regrowth. The process of forming the gate metal layer generally avoids plasma damage to the wafer substrate.
Abstract:
A light-emitting diode (LED) device is provided. The LED device has raised semiconductor regions formed on a substrate. LED structures are formed over the raised semiconductor regions such that bottom contact layers and active layers of the LED device are conformal layers. The top contact layer has a planar surface. In an embodiment, the top contact layers are continuous over a plurality of the raised semiconductor regions while the bottom contact layers and the active layers are discontinuous between adjacent raised semiconductor regions.
Abstract:
The package substrates with through silicon plugs (or vias) described above provide lateral and vertical heat dissipation pathways for semiconductor chips that require thermal management. Designs of through silicon plugs (TSPs) with high duty ratios can most effectively provide heat dissipation. TSP designs with patterns of double-sided combs can provide high duty ratios, such as equal to or greater than 50%. Package substrates with high duty ratios are useful for semiconductor chips that generate large amount of heat. An example of such semiconductor chip is a light-emitting diode (LED) chip.
Abstract:
The substrate with through silicon plugs (or vias) described above removes the need for conductive bumps. The process flow is very simple and cost efficient. The structures described combines the separate TSV, redistribution layer, and conductive bump structures into a single structure. By combining the separate structures, a low resistance electrical connection with high heat dissipation capability is created. In addition, the substrate with through silicon plugs (or vias, or trenches) also allows multiple chips to be packaged together. A through silicon trench can surround the one or more chips to provide protection against copper diffusing to neighboring devices during manufacturing. In addition, multiple chips with similar or different functions can be integrated on the TSV substrate. Through silicon plugs with different patterns can be used under a semiconductor chip(s) to improve heat dissipation and to resolve manufacturing concerns.
Abstract:
A method of forming a semiconductor structure includes providing a substrate; forming a buffer/nucleation layer over the substrate; forming a group-III nitride (III-nitride) layer over the buffer/nucleation layer; and subjecting the III-nitride layer to a nitridation. The step of forming the III-nitride layer comprises metal organic chemical vapor deposition.