摘要:
A semiconductor structure and a method of forming the same. The semiconductor structure includes a semiconductor substrate, a gate dielectric layer on top of the semiconductor substrate. The structure also includes a first metal containing region on top of the gate dielectric layer. The structure also includes a second metal containing region on top of the gate dielectric layer wherein the first and second metal containing regions are in direct physical contact with each other. The structure further includes a gate electrode layer on top of both the first and second metal containing regions and the gate electrode layer is in direct physical contact with both the first and second metal containing regions. The structure further includes a patterned photoresist layer on top of the gate electrode layer.
摘要:
Methods, IC and related transistors using capping layer with high-k/metal gate stacks are disclosed. In one embodiment, the IC includes a first type transistor having a gate electrode including a first metal, a second metal and a first dielectric layer, the first dielectric layer including oxygen; a second type transistor separated from the first type transistor by an isolation region, the second type transistor having a gate electrode including the second metal having a work function appropriate for the second type transistor and the first dielectric layer; and wherein the gate electrode of the first type transistor includes a rare earth metal between the first metal and the second metal and the gate electrode of the second type transistor includes a second dielectric layer made of an oxide of the rare earth metal.
摘要:
An immersion lithography system is provided which includes an optical source operable to produce light having a nominal wavelength and an optical imaging system. The optical imaging system has an optical element in an optical path from the optical source to an article to be patterned thereby. The optical element has a face which is adapted to contact a liquid occupying a space between the face and the article. The optical element includes a material which is degradable by the liquid and a protective coating which covers the degradable material at the face for protecting the face from the liquid, the protective coating being transparent to the light, stable when exposed to the light and stable when exposed to the liquid.
摘要:
Methods for fabricating two metal gate stacks for complementary metal oxide semiconductor (CMOS) devices are provided. A first metal layer may be deposited onto a gate dielectric. Next a mask layer may be deposited on the first metal layer and subsequently etch. The first metal layer is then etched. Without removing the mask layer, a second metal layer may be deposited. In one embodiment, the mask layer is a second metal layer. In other embodiments, the mask layer is a silicon layer. Subsequent fabrication steps include depositing another metal layer (e.g., another PMOS metal layer), depositing a cap, etching the cap to define gate stacks, and simultaneously etching the first and second gate region having a similar thickness with differing metal layers.
摘要:
The structure and method of forming a notched gate MOSFET disclosed herein addresses such problems as device reliability. A gate dielectric (e.g. gate oxide) is formed on the surface of an active area on the semiconductor substrate, preferably defined by an isolation trench region. A layer of polysilicon is then deposited on the gate dielectric. This step is followed by depositing a layer of silicon germanium) (SiGe). The sidewalls of the polysilicon layer are then laterally etched, selective to the SiGe layer to create a notched gate conductor structure, with the SiGe layer being broader than the underlying polysilicon layer. Sidewall spacers are preferably formed on sidewalls of the SiGe layer and the polysilicon layer. A silicide layer is preferably formed as a self-aligned silicide from a polysilicon layer deposited over the SiGe layer, to reduce resistance of the gate conductor. One or more other processing steps (e.g. source and drain implants, extension implants, and pocket lightly doped drain (LDD) implants), gate conductor stack doping, and silicidation are preferably performed in completing the transistor.
摘要:
Methods and devices are described for an insulated dielectric interface between a high-k material and silicon for improving electrical characteristics of devices. A method includes forming an oxide layer on a silicon substrate using an in situ steam generation process, etching the oxide layer to form a reduced thickness oxide layer of less than 10 Angstroms, and annealing the reduced thickness oxide layer with ammonia. A semiconductor wafer comprises a silicon substrate, an oxide layer coupled to the silicon substrate where the oxide layer having a thickness of less than 10 Angstroms, and a high-k dielectric material deposited onto the oxide layer.
摘要:
Methods of forming air gaps or porous dielectric materials between interconnects of integrated circuits and structures thereof. Air gaps or highly porous dielectric material having a dielectric constant of close to or equal to 1.0 are formed in a first region but not a second region of an interconnect layer. The air gaps or highly porous dielectric material are formed by depositing a first insulating material comprising an energy-sensitive material over a workpiece, depositing a second insulating material over the first insulating material, and exposing the workpiece to energy. At least a portion of the first insulating material in the first region is removed through the second insulating material. Structurally stable insulating material is disposed between conductive lines in the second region of the workpiece, providing mechanical strength for the integrated circuit.
摘要:
A method of forming collar isolation for a trench storage memory cell structure is provided in which amorphous Si (a:Si) and silicon germanium (SiGe) are first formed into a trench structure. An etching process that is selective to a:Si as compared to SiGe is employed in defining the regions in which the collar isolation will be formed. The selective etching process employed in the present invention is a wet etch process that includes etching with HF, rinsing, etching with NH4OH, rinsing, and drying with a monohydric alcohol such as isopropanol. The sequence of NH4OH etching and rinsing may be repeated any number of times. The conditions used in the selective etching process of the present invention are capable of etching a:Si at a faster rate than SiGe.
摘要:
The structure and method of forming a notched gate MOSFET disclosed herein addresses such problems as device reliability. A gate dielectric (e.g. gate oxide) is formed on the surface of an active area on the semiconductor substrate, preferably defined by an isolation trench region. A layer of polysilicon is then deposited on the gate dielectric. This step is followed by depositing a layer of silicon germanium) (SiGe). The sidewalls of the polysilicon layer are then laterally etched, selective to the SiGe layer to create a notched gate conductor structure, with the SiGe layer being broader than the underlying polysilicon layer. Sidewall spacers are preferably formed on sidewalls of the SiGe layer and the polysilicon layer. A silicide layer is preferably formed as a self-aligned silicide from a polysilicon layer deposited over the SiGe layer, to reduce resistance of the gate conductor. One or more other processing steps (e.g. source and drain implants, extension implants, and pocket lightly doped drain (LDD) implants), gate conductor stack doping, and silicidation are preferably performed in completing the transistor.
摘要:
Methods and devices are described for an insulated dielectric interface between a high-k material and silicon for improving electrical characteristics of devices. A method includes forming an oxide layer on a silicon substrate using an in situ steam generation process, etching the oxide layer to form a reduced thickness oxide layer of less than 10 Angstroms, and annealing the reduced thickness oxide layer with ammonia. A semiconductor wafer comprises a silicon substrate, an oxide layer coupled to the silicon substrate where the oxide layer having a thickness of less than 10 Angstroms, and a high-k dielectric material deposited onto the oxide layer.