Abstract:
According to an embodiment, a composite wafer includes a carrier substrate having a graphite layer and a monocrystalline semiconductor layer attached to the carrier substrate.
Abstract:
A method for manufacturing a semiconductor structure is provided, which may include: forming a p-doped region adjacent to an n-doped region in a substrate; carrying out an anodic oxidation to form an oxide layer on a surface of the substrate, wherein the oxide layer in a first portion of the surface extending along the n-doped region has a greater thickness than the oxide layer in a second portion of the surface extending along the p-doped region.
Abstract:
A semiconductor device includes at least one ohmic contact region between a semiconductor substrate of the semiconductor device and an electrically conductive structure arranged adjacent to the semiconductor substrate. Further, the semiconductor device includes at least one Schottky contact region between the semiconductor substrate of the semiconductor device and the electrically conductive structure. The at least one ohmic contact region is arranged adjacent to the at least one Schottky contact region. The semiconductor substrate includes a first doping layer arranged adjacent to the electrically conductive structure. An average doping concentration of the surface region of the first doping layer in an area of the at least one ohmic contact region differs from an average doping concentration of the surface region of the first doping layer in an area of the at least one Schottky contact region by less than 10%.
Abstract:
A method of manufacturing a semiconductor device includes forming a semiconductor diode by forming a drift region, forming a first semiconductor region of a first conductivity type in or on the drift region and electrically coupling the first semiconductor region to a first terminal via a first surface of a semiconductor body, etching a trench into the semiconductor body, and forming a channel region of a second conductivity type in the trench and electrically coupling the channel region to the first terminal via the first surface of the semiconductor body. A first side of the channel region adjoins the first semiconductor region.
Abstract:
According to an embodiment, a composite wafer includes a carrier substrate having a graphite layer and a monocrystalline semiconductor layer attached to the carrier substrate.
Abstract:
A semiconductor component with vertical structures having a high aspect ratio and method. In one embodiment, a drift zone is arranged between a first and a second component zone. A drift control zone is arranged adjacent to the drift zone in a first direction. A dielectric layer is arranged between the drift zone and the drift control zone wherein the drift zone has a varying doping and/or a varying material composition at least in sections proceeding from the dielectric.
Abstract:
A method of producing a power semiconductor device includes: providing a semiconductor body with a vertically protruding fin covered by an insulation material covered by an electrode material, and an insulating material at least partially covering the electrode material; exposing a portion of the electrode material arranged above an upper portion of the fin; removing the exposed portion of the electrode material to expose the upper portion of the fin, thereby forming a respective recess adjacent to both sides of the exposed upper portion of the fin, the recesses being spatially confined by the insulation material, the electrode material and the insulating material; forming an ILD on top of the exposed portions of the device; and forming a first load terminal above the ILD and configured to contact the upper portion of the fin.
Abstract:
A voltage-controlled switching device includes a drain/drift region of a first conductivity type formed in a semiconductor portion. A channel region and the drain/drift region are in direct contact with each other. A source region of a second conductivity type and the channel region are in direct contact with each other. A gate electrode and the channel region are capacitively coupled and configured such that, in a an on-state of the voltage-controlled switching device, a first enhancement region of charge carriers corresponding to the first conductivity type forms in the channel region and band-to-band tunneling is facilitated between the source region and the first enhancement region.
Abstract:
A silicon carbide device includes a silicon carbide body having a hexagonal crystal lattice with a c-plane and with further main planes. The further main planes include a-planes and m-planes. A mean surface plane of the silicon carbide body is tilted to the c-plane by an off-axis angle. The silicon carbide body includes a columnar portion with column sidewalls. At least three of the column sidewalls are oriented along a respective one of the further main planes. A trench gate structure is in contact with the at least three of the column sidewalls.
Abstract:
A semiconductor component includes: a SiC semiconductor body; a trench extending from a first surface of the SiC semiconductor body into the SiC semiconductor body, the trench having a conductive connection structure, a structure width at a bottom of the trench, and a dielectric layer covering sidewalls of the trench; a shielding region along the bottom and having a central section which has a lateral first width; and a contact formed between the conductive connection structure and the shielding region. The conductive connection structure is electrically connected to a source electrode. In at least one doping plane extending approximately parallel to the bottom, a dopant concentration in the central section deviates by not more than 10% from a maximum value of the dopant concentration in the shielding region in the doping plane. The first width is less than the structure width and is at least 30% of the structure width.