Abstract:
Provided is a display system that uses a mobile communication terminal. The display system includes a mobile communication terminal having an insertion unit, and a mobile display device having a slot-type connection unit insertable into the insertion unit of the mobile communication terminal. Accordingly, it is possible to display received content on a display screen larger than that of the mobile communication terminal. Also, the display system overcomes noise problems and displays high-definition images by constructing a minimum number of connection terminals that connect the mobile display device to the mobile communication terminal. A method for displaying an image from a mobile communication terminal and a computer program product including a storage medium for performing the method are also provided.
Abstract:
An optical recording medium having a phase transition material film and a method of manufacturing the optical recording medium are provided. In the method, first, a phase transition material film, a sacrificial film, and a metal film are sequentially stacked on a substrate. Next, the metal film is anodized to form a metal oxide film having a plurality of holes, and portions of the sacrificial film exposed through the holes are anode-oxidized to form oxide films. Thereafter, the phase transition material film is patterned by removing the metal oxide film and by etching the sacrificial film and the phase transition material film using the oxide films as a mask. Then, the oxide films are removed from the sacrificial film, and an upper insulation film, a reflection film, and a protection film are deposited on the upper surface of the patterned phase transition material film. The optical recording medium can be simply manufactured by using a self-alignment method and can have a highly-integrated large-capacity memory.
Abstract:
A memory device using a multi-layer with a graded resistance change is provided. The memory device includes: a lower electrode; a data storage layer being located on the lower electrode and having the graded resistance change; and an upper electrode being located on the data storage layer.
Abstract:
An electron beam lithography apparatus, which uses a patterned emitter, includes a pyroelectric plate emitter that emits electrons using a patterned metal thin layer formed on the pyroelectric plate as a mask. When the emitter is heated, electrons are emitted from portions of the emitter covered with a patterned dielectric layer, and not from portions of the emitter covered with a patterned metal thin layer, and a pattern of the emitter is thereby projected onto a substrate. To prevent dispersion of emitted electron beams, the electron beams may be controlled by a permanent magnet, an electro-magnet, or a deflector unit. A one-to-one or x-to-one projection of a desired pattern on the substrate is thereby obtained.
Abstract:
An electron projection lithography apparatus using secondary electrons includes a secondary electron emitter which is spaced apart from a substrate holder by a first predetermined interval and has a patterned mask formed on a surface thereof to face the substrate holder, a primary electron emitter which is spaced apart by a second predetermined interval from the secondary electron emitter in a direction opposite to the substrate holder and emits primary electrons to the secondary electron emitter, a second power supply which applies a second predetermined voltage between the substrate holder and the secondary electron emitter, a first power supply which applies a first predetermined voltage between the secondary electron emitter and the primary electron emitter, and a magnetic field generator which controls a path of secondary electrons emitted from the secondary electron emitter.
Abstract:
The present invention relates to a matrix type multiple numeration system ferroelectric random access memory using a leakage current of dielectric, which is non-volatile and with which a multiple numeration system is realized, and a method for manufacturing the same. In the memory according to the present invention, the unit cells formed of the dielectric and ferroelectric capacitors are arranged in a matrix, the lower electrodes are connected to bit lines, and the upper electrodes are connected to word lines. Thus, a transistor for selecting cells is included for each word line and each bit line. Therefore, it is possible to heighten the integration degree, since the memory cells are each formed of only a dielectric and a ferroelectric capacitor, and to improve productivity since manufacturing processes are simple.
Abstract:
The present invention relates to a matrix type multiple numeration system ferroelectric random access memory using a leakage current of dielectric, which is non-volatile and with which a multiple numeration system is realized, and a method for manufacturing the same. In the memory according to the present invention, the unit cells formed of the dielectric and ferroelectric capacitors are arranged in a matrix, the lower electrodes are connected to bit lines, and the upper electrodes are connected to word lines. Thus, a transistor for selecting cells is included for each word line and each bit line. Therefore, it is possible to heighten the integration degree, since the memory cells are each formed of only a dielectric and a ferroelectric capacitor, and to improve productivity since manufacturing processes are simple.
Abstract:
In a disk apparatus using a ferroelectric thin film coated on the surface of a disk as a recording medium, an electrode layer is formed on a substrate and the ferroelectric thin film is formed on the electrode layer, thereby forming a disk. A head is installed on an arm over the disk. The head has a reflector, and a microtip electrode, for creating or erasing polarization of the ferroelectric thin film. An optical system is provided over the head. The head moves towards or away from the disk depending on recorded information (polarization direction), and the movement is read by the optical system. Therefore, a low-priced disk apparatus, capable of freely recording and reproducing information semipermanently, is realized.
Abstract:
An acousto-optic device capable of increasing a range of a diffraction angle of output light by using a nanostructured acousto-optic medium, and an optical scanner, an optical modulator, a two-dimensional/three-dimensional (2D/3D) conversion stereoscopic image display apparatus, and a holographic display apparatus using the acousto-optic device. The acousto-optic device may include a nanostructured acousto-optic medium formed by at least two different mediums repeatedly alternating with each other, wherein at least one of the at least two different mediums includes an acousto-optic medium. The acousto-optic device having the aforementioned structure may increase the range of a diffraction angle of output light. Thus, various systems such as the optical scanner, the optical modulator, the 2D/3D conversion stereoscopic image display apparatus, and the holographic display apparatus may not require a separate optical system to increase an operational angle range, thereby decreasing a size of the system and/or improving a resolution of the system.
Abstract:
An apparatus for displaying a three-dimensional (3D) image may include a plurality of display panels and a controller configured to apply image signals to each of the plurality of display panels. At least one of the display panels may include a transparent display panel. The plurality of display panels may be spaced apart from each other in a depth direction. A method of displaying a three-dimensional (3D) image may include displaying plane images on each of a plurality of display panels. At least one of the plurality of display panels may include a transparent display panel. The plurality of display panels may be spaced apart from each other in a depth direction.