Abstract:
Tunable diplexers in three-dimensional (3D) integrated circuits (IC) (3DIC) are disclosed. In one embodiment, the tunable diplexer may be formed by providing one of either a varactor or a variable inductor in the diplexer. The variable nature of the varactor or the variable inductor allows a notch in the diplexer to be tuned so as to select a band stop to eliminate harmonics at a desired frequency as well as control the cutoff frequency of the pass band. By stacking the elements of the diplexer into three dimensions, space is conserved and a variety of varactors and inductors are able to be used.
Abstract:
Some novel features pertain to an integrated device that includes a substrate, a first cavity through the substrate, and a toroid inductor configured around the first cavity of the substrate. The toroid inductor includes a set of windings configured around the first cavity. The set of windings includes a first set of interconnects on a first surface of the substrate, a set of though substrate vias (TSVs), and a second set of interconnects on a second surface of the substrate. The first set of interconnects is coupled to the second set of interconnects through the set TSVs. In some implementations, the integrated device further includes an interconnect material (e.g., solder ball) located within the first cavity. The interconnect material is configured to couple a die to a printed circuit board. In some implementations, the interconnect material is part of the toroid inductor.
Abstract:
A particular device includes a substrate and a spiral inductor coupled to the substrate. The spiral inductor includes a first conductive spiral and a second conductive spiral overlaying the first conductive spiral. A first portion of an innermost turn of the spiral inductor has a first thickness in a direction perpendicular to the substrate. The first portion of the innermost turn includes a first portion of the first conductive spiral and does not include the second conductive spiral. A second portion of the innermost turn includes a first portion of the second conductive spiral. A portion of an outermost turn of the spiral inductor has a second thickness in the direction perpendicular to the substrate that is greater than the first thickness. A portion of the outermost turn includes a second portion of the first conductive spiral and a second portion of the second conductive spiral.
Abstract:
Tunable diplexers in three-dimensional (3D) integrated circuits (IC) (3DIC) are disclosed. In one embodiment, the tunable diplexer may be formed by providing one of either a varactor or a variable inductor in the diplexer. The variable nature of the varactor or the variable inductor allows a notch in the diplexer to be tuned so as to select a band stop to eliminate harmonics at a desired frequency as well as control the cutoff frequency of the pass band. By stacking the elements of the diplexer into three dimensions, space is conserved and a variety of varactors and inductors are able to be used.
Abstract:
A particular device includes a replica circuit disposed above a dielectric substrate. The replica circuit includes a thin film transistor (TFT) configured to function as a variable capacitor or a variable resistor. The device further includes a transformer disposed above the dielectric substrate and coupled to the replica circuit. The transformer is configured facilitate an impedance match between the replica circuit and an antenna.
Abstract:
Aspects of the disclosure are directed to a bandpass filter including a first, second, third and fourth resonators, wherein the second and third resonators are in parallel, wherein the first resonator includes a first and second terminals, wherein the second resonator includes a second resonator top terminal and a second resonator bottom terminal, wherein the third resonator includes a third resonator top terminal and a third resonator bottom terminal, wherein the fourth resonator includes a third terminal and a fourth terminal; wherein the first terminal is coupled to the second resonator top terminal, wherein the second terminal is coupled to the third resonator top terminal, wherein the third terminal is coupled to the third resonator bottom terminal, wherein the fourth terminal is coupled to the second resonator bottom terminal; a first inductor coupled to the first and third terminals; and a second inductor coupled to the second and fourth terminals.
Abstract:
Aspects of the disclosure are directed to a bandpass filter including a first, second, third and fourth resonators, wherein the second and third resonators are in parallel, wherein the first resonator includes a first and second terminals, wherein the second resonator includes a second resonator top terminal and a second resonator bottom terminal, wherein the third resonator includes a third resonator top terminal and a third resonator bottom terminal, wherein the fourth resonator includes a third terminal and a fourth terminal; wherein the first terminal is coupled to the second resonator top terminal, wherein the second terminal is coupled to the third resonator top terminal, wherein the third terminal is coupled to the third resonator bottom terminal, wherein the fourth terminal is coupled to the second resonator bottom terminal; a first inductor coupled to the first and third terminals; and a second inductor coupled to the second and fourth terminals.
Abstract:
In conventional packaging strategies for mm wave applications, the size of the package is dictated by the antenna size, which is often much larger than the RFIC (radio frequency integrated circuit). Also, the operations are often limited to a single frequency which limits their utility. In addition, multiple addition build-up layers are required to provide the necessary separation between the antennas and ground layers. To address these issues, it is proposed to provide a device that includes an antenna package, an RFIC package, and an interconnect assembly between the antenna and the RFIC packages. The interconnect assembly may comprise a plurality of interconnects with high aspect ratios and configured to connect one or more antennas of the antenna package with an RFIC of the RFIC package. An air gap may be formed in between the antenna package and the RFIC package for performance improvement.
Abstract:
Base pads are spaced by a pitch on a support surface. Conducting members, optionally Cu or other metal pillars, extend up from the base pads to top pads. A top pad interconnector connects the top pads in a configuration establishing an inductor current path between the base pads.
Abstract:
A semiconductor device according to some examples of the disclosure may include a package substrate, a semiconductor die coupled to one side of the package substrate with a first set of contacts on an active side of the semiconductor die and coupled to a plurality of solder prints with a second set of contacts on a back side of the semiconductor die. The semiconductor die may include a plurality of vias connecting the first set of contacts to the second set of contacts and configured to allow heat to be transferred from the active side of the die to the plurality of solder prints for a shorter heat dissipation path.