Abstract:
A method for promoting growth of bone, periodontium, ligament, or cartilage in a mammal by applying to the bone, periodontium, ligament, or cartilage a composition comprising platelet-derived growth factor at a concentration in the range of about 0.1 mg/mL to about 1.0 mg/mL in a pharmaceutically acceptable liquid carrier and a pharmaceutically-acceptable solid carrier.
Abstract:
An intramedullary bone device which has an internal lumen defined by a sidewall is described. The sidewall includes first and second perforated regions having respective first and second openings. The device also includes fluid flow directing features to direct the flow of a fluid from the internal lumen of the device through the openings in the sidewall of the device. The device may be part of a system with a fluid introducer member inserted through the internal lumen of the device. A method of securing and/or stabilising a bone including a fractured bone is also described.
Abstract:
Biomaterials, implants made therefrom, methods of making the biomaterial and implants, methods of promoting bone or wound healing in a mammal by administering the biomaterial or implant to the mammal, and kits that include such biomaterials, implants, or components thereof. The biomaterials may be designed to exhibit osteogenic, osteoinductive, osteoconductive, and/or osteostimulative properties.
Abstract:
An implant for the repair of bone and cartilage that includes a cell conductive zone that contains biopolymeric fibers and an osteoconductive zone that contains biopolymeric fibers and calcium-containing mineral particles. The biopolymeric fibers from one zone overlap with the fibers in the other zone forming a stable physical and mechanical integration of the two zones, thus conferring in vivo stability to the implant.
Abstract:
Disclosed herein are compositions and methods of treating osteroporosis, bone fracture, bone loss, and increasing bone density by administration of compounds of formula (I) or compositions comprising a compound of formula (I) and a pharmaceutically acceptable carrier, wherein L1, L2, L4, R1, R4, R5, R6, and s are as defined in the specification.
Abstract:
A sol-gel bioactive glass precursor, method for making sol-gel glasses, resultant sol-gel bioactive glasses, and methods of use thereof which include introducing Na2O into the glass network during the sol-gel process through the use of Na-ethoxide, NaCl, or sodium silicate rather than sodium nitrate. Medical and industrial uses of such glasses.
Abstract:
Methods and apparatuses are provided for musculoskeletal tissue engineering. For example, a scaffold apparatus is provided which comprises microspheres of selected sizes and/or composition. The microspheres are layered to have a gradient of microsphere sizes and/or compositions. The scaffold provides a functional interface between multiple tissue types.
Abstract:
A hydrogel composition comprising an alginate polymer and a hyaluronic acid polymer is a useful polymer scaffold for mammalian tissue engineering. To enable cell adhesion, adhesion peptides may be covalently linked to a portion of the alginate and/or hyaluronic acid. This alginate-hyaluronic acid-adhesion peptide hydrogel composition localizes cells and other biological constituents to promote tissue repair at a site of tissue defect, while controlling the speed of gelation and resorption time.