摘要:
A method for controlling emissions during low-load diesel engine operation is provided. The engine includes at least one piston movable in a cylinder between a top dead center and a bottom dead center position, a fuel injector for injecting fuel into the cylinder, and a variable geometry turbine through which exhaust from the engine is adapted to flow. According to the method, the engine is operated at low load, NOx emissions are measured at an exhaust of the engine, and a variable geometry turbine inlet opening size is controlled responsive to NOx emissions measurements so that NOx emission levels are controlled.
摘要:
A piston assembly comprises a piston body, a connecting rod, and a wrist pin. The piston body includes a pair of first cross bores presenting a piston sliding surface. The connecting rod includes a second cross bore presenting a rod sliding surface which is axially aligned with the first cross bores of the piston body. A wrist pin is disposed in the aligned cross bores and couples the piston body to the connecting rod. The wrist pin also presents a pin sliding surface facing the rod sliding surface and the piston sliding surfaces. A coating is applied to at least one of the sliding surfaces, such as by dipping, brushing, atomizing, spraying, printing, or screen printing. The coating includes a polymer matrix, such as polyamide imide (PAI), and hard particles, such as Fe2O3, disposed throughout the polymer matrix. The hard particles have a hardness of at least 600 HV/0.5.
摘要:
Systems and methods for reducing NOx emissions are provided, comprising: adjusting an amount of water injected into an intake manifold responsive to an oxygen concentration, temperature and pressure in the intake manifold; and heating the injected water if humidity is higher than a threshold. Water injected into the intake manifold decreases the temperature of, and dilutes the oxygen content of intake gases thereby decreasing NOx emissions.
摘要:
A diesel fuel additive composition, a fuel containing the fuel additive, a method for improving diesel engine performance using the additive and a method for making the additive for diesel engines having a high pressure fuel injection system. The fuel additive has a number average molecular weight (Mn) of from about 500 to about 10,000 and is selected from a hydrocarbyl-substituted succinic acid or anhydride or derivative thereof and a hydrocarbyl-substituted Mannich base. The additive has a molecular weight distribution such that less than about 25 wt. % of the additive has a molecular weight of 400 or less as measured by gel permeation chromatography (GPC) based on a polystyrene calibration curve.
摘要:
At least one donor cylinder is coupled to an intake manifold. The intake manifold is configured to feed a mixture of air and a first fuel, or a mixture of air, the first fuel, and a second fuel to the at least one donor cylinder. At least one non-donor cylinder is coupled to the intake manifold and an exhaust manifold. The intake manifold is further configured to feed air, or a mixture of air and the second fuel to the at least one non-donor cylinder. An exhaust channel extend from the at least one donor cylinder to the intake manifold for recirculating an exhaust emission from the at least one donor cylinder to the at least one donor, and non-donor cylinders via the intake manifold.
摘要:
A turbocharger unit (18) for an internal combustion engine (10) with at least one exhaust line (15, 16) for conducting exhaust gases away from the combustion chamber (11) of the engine and at least one inlet line (12) for supplying air to the combustion chamber. The turbocharger unit includes a turbine (17) which interacts with a compressor (19) for extracting energy from the exhaust gas flow of the engine and pressurizing the inlet air of the engine. The compressor (19) is of radial type and provided with an impeller with backswept blades (35) where the blade angle (βb2) between an imaginary extension of the center line of the blade between root section and tip section in the direction of the outlet tangent and a line (36) which connects the center axis of the impeller to the outer tip of the blade is at least roughly 45°. The turbine (17) which drives the compressor (19) is of radial type.
摘要:
This invention is related to an environment friendly, high speed internal combustion engine wherein the fuel is used at high efficiency by improving the connecting rod mechanism and by changing the piston structure and wherein the waste gas emission release is at a minimum level.
摘要:
A direct injection compression ignition internal combustion engine includes a fuel system having a nozzle extending into a cylinder of the engine and a plurality of spray orifices formed in the nozzle. Each of the spray orifices has an inner diameter dimension of about 0.09 mm or less, and define inter-orifice angles between adjacent spray orifice center axes of about 36° or greater such that spray plumes of injected fuel from each of the spray orifices combust within the cylinder according to a non-sooting lifted flame and gas entrainment combustion pattern. Related methodology is also disclosed.
摘要:
A method for detecting the blending level of biodiesel fuel in an internal combustion engine includes setting at least two post injection fuel quantity reference values respectively for known biodiesel blending percentage levels. A post injection fuel quantity value is evaluated and is compared with the at least two post injection fuel quantity reference value. A predetermined correlation set of values between the post injection fuel quantity value and a biodiesel blending level expressed by biodiesel percentage with respect to the petro-diesel is used to determine the biodiesel blending level.
摘要:
Before a large amount of PM is deposited in a filter 32, an exhaust gas cleaning system for a construction machine regenerates the filter to avoid a decrease in output due to the exhaust gas pressure rise occurring immediately before the filter is regenerated, and to reduce the likelihood of unusual increases in the internal temperature of the filter due to the combustion of the PM, associated with the execution of the regeneration, and consequential thermal damage to the filter. If a value of a differential pressure across the filter 32 is greater than a predetermined pressure, a controller 4 conducts engine speed control to a predetermined rotating speed Na suitable for the regeneration, then enters forced regeneration automatically, and burns off the PM. When the sensed differential pressure decreases below a predetermined pressure, the regeneration is terminated automatically and the engine 1 is stopped.