Abstract:
A light-emitting diode of GaN compound semiconductor emits a blue light from a plane rather than dots for improved luminous intensity. This diode includes a first electrode associated with a high-carrier density n.sup.+ layer and a second electrode associated with a high-impurity density .[.i.sub.H -layer.]. .Iadd.H-layer.Iaddend.. These electrodes are made up of a first Ni layer (110 .ANG. thick), a second Ni layer (1000 .ANG. thick), an Al layer (1500 .ANG. thick), a Ti layer (1000 .ANG. thick), and a third Ni layer (2500 .ANG. thick). The Ni layers of dual structure permit a buffer layer to be formed between them. This buffer layer prevents the Ni layer from peeling. The direct contact of the Ni layer with GaN lowers a drive voltage for light emission and increases luminous intensity.
Abstract:
The invention relates to a method of manufacturing microcrystalline layers from elements of the principal group IV, particularly Si, Ge, Sn or their alloys such as SiC or SiGe by means of cyclic CVD or related methods, a cycle comprising two steps. a first step for producing an amorphous layer of the element in such a way that compounds and hydrogen are passed under conventional CVD conditions through separate access means into the reactor over the substrate, and in that in a second step, a hydrogen treatment takes place, the supply of the process gas flow, the hydrogen flow and the connection of the CVD reactor to the pump being closed at least intermittently during the second step, so that the hydrogen treatment takes place in a closed CVD process (CC-CVD process) with the quantity of hydrogen or element hydrogen compounds located in the reactor.
Abstract:
The present invention provides an electroluminescent device of a Group II-VI compound semiconductor which comprises a substrate, a light-emitting portion, and a conductive portion provided at least between the substrate and the light-emitting portion for injecting into the light-emitting portion the current to be produced in the device by the application of an external voltage.
Abstract:
The present invention provides an electroluminescent device of Group II-VI compound semiconductor which comprises a substrate, a light-emitting portion, and a conductive portion provided at least between the substrate and the light-emitting portion for injecting into the light-emitting portion the current to be produced in the device by the application of an external voltage.
Abstract:
A semiconductor device having a sandwich construction formed by causing a semiconductor region and an opposed region to face each other across a thin film which is made of a substance having a wider forbidden band gap than that of the semiconductor region and having a barrier relative to the semiconductor region. The so-formed device exhibits various effects such as amplification, negative resistance, switching, voltage or current generation, photo-electric conversion, and light-emission either upon irradiation with light or upon application of a power source thereon.
Abstract:
A method of coactivating a rare earth activated, electroluminescent zinc sulfide film with activator gas is described. The phosphor film is deposited upon a substrate by co-sputtering from a zinc sulfide target and a rare earth target in an atmosphere such as hydrogen, chlorine, fluorine or bromine, and an inert gas.
Abstract:
Luminescent semiconductor device having a wide-gap semiconductor material substrate (e.g., ZnS), a thin (.ltorsim.100A thick) alkali halide insulating layer (e.g., NaI, KI, LiI) in the substrate and a metal layer on the insulating layer such that the insulating layer is sandwiched between the substrate and the metal layer. The device emits light in the blue and in the green regions of the electromagnetic spectrum.
Abstract:
An electroluminescent semiconductor device having localized emission.The device comprises a p-n diode of which a region is covered with a dielectric layer which itself is covered partly by an electrode polarized with respect to the said region to establish an electric field zone influencing the injected carriers.Application to the localized control of the emission of an electroluminescent diode.
Abstract:
An information storing method and a storing device using a conductor-insulator-semiconductor (CIS) structure as a conductor storage element is disclosed within. The CIS structure is initially charged to predetermined voltage. Minority carriers are controllably generated within the semiconductor in proportional response to an information-bearing signal such as electromagnetic radiation flux. The generated minority carriers move to and are stored at the surface of the semiconductor beneath the conductor due to the electric field. The voltage is reversed, injecting the generated minority carriers into the semiconductor where they recombine with majority carriers. Electromagnetic radiation is produced during the recombination in an amount proportional to the integrated incident electromagnetic radiation flux.