III-Nitride optoelectronic semiconductor device containing lattice mismatched III-Nitride semiconductor materials
    61.
    发明授权
    III-Nitride optoelectronic semiconductor device containing lattice mismatched III-Nitride semiconductor materials 失效
    含有晶格不匹配的III-Nitride半导体材料的III-Nitride光电半导体器件

    公开(公告)号:US06695913B1

    公开(公告)日:2004-02-24

    申请号:US09500164

    申请日:2000-02-08

    Inventor: Geoffrey Duggan

    Abstract: A light-emitting diode or laser diode comprises a sapphire substrate and, grown on the substrate, a GaN buffer layer, an n-doped GaN contact layer, an n-doped (AlGa)N cladding layer, a Zn-doped (InGa)N active layer, a p-doped (AlGa)N cladding layer and a p-doped GaN contact layer. Graded layers are introduced at the interfaces between the cladding layers and both the contact layers and the active layer. The constituency of each graded layer is graded from one side to the other of the layer such that the layer is lattice matched with the adjacent layer on each side with the result that the strain at the interfaces between the layers is reduced and the possibility of deleterious dislocations being introduced at the interfaces is minimised. By removing or reducing such dislocations, the efficiency of the operation of the device is increased.

    Abstract translation: 发光二极管或激光二极管包括蓝宝石衬底,并且在衬底上生长GaN缓冲层,n掺杂GaN接触层,n掺杂(AlGa)N包覆层,Zn掺杂(InGa) N有源层,p掺杂(AlGa)N覆层和p掺杂的GaN接触层。 在包覆层和接触层和有源层之间的界面处引入渐变层。 每个分级层的选区从层的一侧分级到另一层,使得该层与每侧的相邻层晶格匹配,结果是层之间的界面处的应变减小,并且有害的可能性 在界面处引入的位错最小化。 通过去除或减少这种位错,装置的操作效率提高。

    Extended wavelength strained layer lasers having nitrogen disposed therein
    62.
    发明申请
    Extended wavelength strained layer lasers having nitrogen disposed therein 失效
    具有氮的扩展波长应变层激光器设置在其中

    公开(公告)号:US20040017835A1

    公开(公告)日:2004-01-29

    申请号:US10373566

    申请日:2003-02-26

    Abstract: Several methods are used in novel ways with newly identified and viable parameters to decrease the peak transition energies of the pseudomorphic InGaAs/GaAs heterostructures. These techniques, taken separately or in combination, suffice to permit operation of light emitting devices at wavelengths of 1.3 nullm or greater of light-emitting electro-optic devices. These methods or techniques, by example, include: (1) utilizing new superlattice structures having high In concentrations in the active region, (2) utilizing strain compensation to increase the usable layer thickness for quantum wells with appropriately high In concentrations, (3) utilizing appropriately small amounts of nitrogen (N) in the pseudomorphic InGaAsN/GaAs laser structure, and (4): sue of nominal (111) oriented substrates to increase the usable layer thickness for quantum wells with appropriately high In concentrations. In all of the above techniques, gain offset may be utilized in VCSELs to detune the emission energy lower than the peak transition energy, by about 25 meV or even more, via appropriate DBR spacing. Gain offset may also be utilized in some forms of in-plane lasers. Increased temperature may also be used to decrease peak transition energy (and therefore the emission energy) by about 50 meV/100null C. All these techniques are furthermore applicable to other material systems, for example, extending the emission wavelength for laser diodes grown on InP substrates. Additionally, structures which utilize the above techniques are discussed.

    Abstract translation: 以新颖的方式使用几种方法,用新的识别和可行的参数来降低伪晶InGaAs / GaAs异质结构的峰跃迁能。 单独或组合使用的这些技术足以允许在发光电光器件的1.3μm或更大的波长处操作发光器件。 这些方法或技术例如包括:(1)利用在有源区域中具有高In浓度的新超晶格结构,(2)利用应变补偿增加适当高浓度的量子阱的可用层厚度,(3) 在伪晶InGaAsN / GaAs激光器结构中适当地使用少量的氮(N),以及(4):标称(111)取向的衬底的起始,以增加适当高的In浓度的量子阱的可用层厚度。 在所有上述技术中,增益偏移可以用于VCSEL中,以通过适当的DBR间隔将低于峰值跃迁能量的发射能量去除约25meV或甚至更多。 在某些形式的平面内激光器中也可以使用增益偏移。 也可以使用增加的温度来将峰值转变能量(因此发射能量)降低约50meV / 100℃。所有这些技术还可应用于其它材料系统,例如,扩展生长在激光二极管上的激光二极管的发射波长 InP衬底。 另外,讨论了利用上述技术的结构。

    Microelectromechanically tunable, confocal, vertical cavity surface emitting laser and fabry-perot filter
    63.
    发明授权
    Microelectromechanically tunable, confocal, vertical cavity surface emitting laser and fabry-perot filter 失效
    微机电可调谐,共聚焦,垂直腔表面发射激光和fabry-perot滤光片

    公开(公告)号:US06645784B2

    公开(公告)日:2003-11-11

    申请号:US10136057

    申请日:2002-04-29

    Abstract: A method is provided for fabricating microelectromechanically tunable vertical-cavity surface-emitting lasers and microelectromechanically tunable Fabry-Perot filters with precise lateral and vertical dimensional control. Strained reflective dielectric film(s) are applied to a multiple quantum well structure to electronically band-gap-engineer the quantum wells. Appropriate strain in the reflective dielectric film layers is also used to create appropriate curvature in one of the reflective dielectric film stacks so as to form a confocal cavity between a planar reflective dielectric film layer and the curved reflective dielectric film layer in the vertical cavity surface emitting laser or filter. Microelectromechanical tunable vertical cavity surface emitting lasers and filter structures are also provided which include a suspended membrane structure made of a dielectric/metal membrane or metal film that supports a cavity-tuning reflective dielectric film stack while being anchored at the perimeter by metal support post(s). Precise air-cavity length and lateral dimensions are achieved by micro-die-casting using a micro-machined sacrificial polyimide or aluminum disk. Further, tuning is achieved by translational movement of the cavity-tuning reflective dielectric film stack in a controlled electrostatic field.

    Abstract translation: 提供了一种用于制造具有精确横向和垂直尺寸控制的微机电可调垂直腔表面发射激光器和微机电可调法布里 - 珀罗滤波器的方法。 将应变反射介电膜应用于多量子阱结构,以电子带隙工程化量子阱。 反射介电膜层中的适当应变也用于在反射介电膜堆叠之一中产生适当的曲率,以便在平面反射介电膜层和在垂直腔表面中的弯曲反射介电膜层之间形成共聚焦腔 激光或过滤器。 还提供了微电子机械可调谐垂直腔表面发射激光器和滤波器结构,其包括由电介质/金属膜或金属膜制成的悬浮膜结构,其在通过金属支撑柱锚固在周边的同时支撑腔调谐反射介电膜堆叠( s)。 通过使用微加工的牺牲聚酰亚胺或铝盘的微压铸来实现精确的空腔长度和横向尺寸。 此外,调谐是通过腔调谐反射介电膜堆叠在受控静电场中的平移运动来实现的。

    Light emitting semiconductor devices
    64.
    发明申请
    Light emitting semiconductor devices 有权
    发光半导体器件

    公开(公告)号:US20030205713A1

    公开(公告)日:2003-11-06

    申请号:US10401958

    申请日:2003-03-31

    Inventor: Shunichi Sato

    Abstract: A light emitting semiconductor device, which includes a Ga0.9In0.1As0.97 active layer disposed between lower n-Ga0.5In0.5P and upper p-Ga0.5In0.5P cladding layers, being provided with lower and upper GaAs spacing layers each intermediate the active layer and the cladding layer. The active layer is approximately lattice-matched to a GaAs substrate and has a thickness of about 0.1 nullm with a photoluminescence peak wavelength of approximately 1.3 nullm, and the GaAs spacing layers each have a thickness of about 2 nm.

    Abstract translation: 包括设置在下部n-Ga0.5In0.5P和上部p-Ga0.5In0.5P包层之间的Ga0.9In0.1As0.97有源层的发光半导体器件分别设置有下部和上部GaAs间隔层 在有源层和包层之间。 有源层与GaAs衬底大致晶格匹配,并且具有约0.1μm的厚度,光致发光峰值波长约1.3μm,并且GaAs间隔层各自具有约2nm的厚度。

    Method of fabricating semiconductor device

    公开(公告)号:US06624001B2

    公开(公告)日:2003-09-23

    申请号:US10244513

    申请日:2002-09-17

    Abstract: An AlGaN buffer layer, an undoped GaN layer, an n-GaN contact layer, an n-InGaN crack preventing layer, an n-AlGaN cladding layer, an MQW active layer, and a p-AlGaN cladding layer are formed in this order on a sapphire substrate. A ridge portion is formed in the p-AlGaN cladding layer, and a p-GaN cap layer is formed on an upper surface of the ridge portion. An n-AlGaN first regrown low-temperature buffer layer and an n-AlGaN current blocking layer are formed in this order on a flat portion and on side surfaces of the ridge portion in the p-AlGaN cladding layer. A p-AlGaN second regrown low-temperature buffer layer and a p-GaN contact layer are formed on the n-AlGaN current blocking layer and on the upper surface of the ridge portion.

    Semiconductor laser, semiconductor device, and their manufacture methods
    66.
    发明授权
    Semiconductor laser, semiconductor device, and their manufacture methods 有权
    半导体激光器,半导体器件及其制造方法

    公开(公告)号:US06606335B1

    公开(公告)日:2003-08-12

    申请号:US09743636

    申请日:2001-01-12

    Abstract: A substrate is made of SiC. A plurality of AlxGa1−xN patterns (0≦x≦1) is formed on a surface of the substrate and dispersively distributed in an in-plane of the substrate. An AlyGa1−yN buffer layer (0≦y≦1) covers the surface of the substrate and the AlxGa1−xN patterns. A laser structure is formed on the AlyGa1−yN buffer layer. Since the AlGaN buffer layer is grown by using the AlGaN patterns as seed crystals, a dislocation density of a predetermined region in the AlGaN buffer layer can be lowered. The characteristics of a laser structure can be improved by forming the laser structure above the region having a low dislocation density. Since the AlGaN pattern has electric conductivity, the device resistance can be suppressed from being increased.

    Abstract translation: 衬底由SiC制成。 在基板的表面上形成多个Al x Ga 1-x N图案(0 <= x <= 1),并且分散地分布在基板的平面内。 AlyGa1-yN缓冲层(0 <= y <= 1)覆盖衬底的表面和Al x Ga 1-x N图案。 在AlyGa1-yN缓冲层上形成激光结构。 由于通过使用AlGaN图案作为晶种生长AlGaN缓冲层,所以可以降低AlGaN缓冲层中的预定区域的位错密度。 可以通过在低位错密度的区域上形成激光结构来改善激光器结构的特性。 由于AlGaN图案具有导电性,所以可以抑制器件电阻的增加。

    Semiconductor device, surface emitting semiconductor laser and edge emitting semiconductor laser
    67.
    发明授权
    Semiconductor device, surface emitting semiconductor laser and edge emitting semiconductor laser 失效
    半导体器件,表面发射半导体激光器和边缘发射半导体激光器

    公开(公告)号:US06597017B1

    公开(公告)日:2003-07-22

    申请号:US09520188

    申请日:2000-03-07

    Abstract: Provided is a semiconductor device that has pseudo lattice matched layers with good crystallinity, formed with lattice mismatched materials. Tensile-strained n-type Al0.5Ga0.5N layers (lower side) and compressive-strained n-type Ga0.9In0.1N layers (upper side) are grown on a GaN crystal layer substrate in 16.5 periods to form an n-type DBR mirror; an undoped GaN spacer layer and an active region are grown on the n-type DBR mirror; and an undoped a GaN spacer layer is grown on the active region. Further, tensile-strained p-type Al0.5Ga0.5N layers (lower side) and compressive-strained p-type Ga0.9In0.1N layers (upper side) are grown on the spacer layer in 12 periods to form a p-type DBR mirror and eventually complete a surface emitting semiconductor laser.

    Abstract translation: 提供具有晶格匹配层的具有良好结晶度的晶格匹配层的半导体器件,由晶格失配的材料形成。 拉伸应变n型Al0.5Ga0.5N层(下侧)和压应变n型Ga 0.9 In 0.1 N层(上侧)在16.5个周期内在GaN晶体层基板上生长以形成n型 DBR镜 在n型DBR镜上生长未掺杂的GaN间隔层和有源区; 并且在有源区上生长未掺杂的GaN间隔层。 此外,在间隔层中在12个时间段内生长拉伸应变的p型Al 0.5 Ga 0.5 N层(下侧)和压应变p型Ga 0.9 In 0.1 N层(上侧)以形成p型 DBR反射镜,最终完成表面发射半导体激光器。

    Semiconductor substrate, semiconductor device and method of manufacturing the same
    68.
    发明授权
    Semiconductor substrate, semiconductor device and method of manufacturing the same 失效
    半导体衬底,半导体器件及其制造方法

    公开(公告)号:US06593159B1

    公开(公告)日:2003-07-15

    申请号:US09532063

    申请日:2000-03-21

    Abstract: A sapphire substrate, a buffer layer of undoped GaN and a compound semiconductor crystal layer successively formed on the sapphire substrate together form a substrate of a light emitting diode. A first cladding layer of n-type GaN, an active layer of undoped In0.2Ga0.8N and a second cladding layer successively formed on the compound semiconductor crystal layer together form a device structure of the light emitting diode. On the second cladding layer, a p-type electrode is formed, and on the first cladding layer, an n-type electrode is formed. In a part of the sapphire substrate opposing the p-type electrode, a recess having a trapezoidal section is formed, so that the thickness of an upper portion of the sapphire substrate above the recess can be substantially equal to or smaller than the thickness of the compound semiconductor crystal layer.

    Abstract translation: 蓝宝石衬底,未掺杂GaN的缓冲层和连续形成在蓝宝石衬底上的化合物半导体晶体层一起形成发光二极管的衬底。 n型GaN的第一包层,未掺杂的In 0.2 Ga 0.8 N的有源层和连续形成在化合物半导体晶体层上的第二覆层一起形成发光二极管的器件结构。 在第二包层上形成p型电极,在第一包层上形成n型电极。 在与p型电极相对的蓝宝石衬底的一部分中,形成具有梯形截面的凹部,使得凹部上方的蓝宝石衬底的上部的厚度可以基本上等于或小于 化合物半导体晶体层。

    Group III-V semiconductor light emitting devices with reduced piezoelectric fields and increased efficiency
    69.
    发明授权
    Group III-V semiconductor light emitting devices with reduced piezoelectric fields and increased efficiency 有权
    具有降低的压电场和提高效率的III-V族III族半导体发光器件

    公开(公告)号:US06569704B1

    公开(公告)日:2003-05-27

    申请号:US09717647

    申请日:2000-11-21

    Abstract: An optical semiconductor device having a plurality of GaN-based semiconductor layers containing a strained quantum well layer in which the strained quantum well layer has a piezoelectric field that depends on the orientation of the strained quantum well layer when the quantum layer is grown. In the present invention, the strained quantum well layer is grown with an orientation at which the piezoelectric field is less than the maximum value of the piezoelectric field strength as a function of the orientation. In devices having GaN-based semiconductor layers with a wurtzite crystal structure, the growth orientation of the strained quantum well layer is tilted at least 1° from the {0001} direction of the wurtzite crystal structure. In devices having GaN-based semiconductor layers with a zincblende crystal structure, the growth orientation of the strained quantum well layer is tilted at least 1° from the {111} direction of the zincblende crystal structure. In the preferred embodiment of the present invention, the growth orientation is chosen to minimize the piezoelectric field in the strained quantum well layer.

    Abstract translation: 一种具有多个GaN基半导体层的光半导体器件,其含有应变量子阱层,其中应变量子阱层具有取决于量子层生长时应变量子阱层的取向的压电场。 在本发明中,应变量子阱层以压电场小于压电场强度的最大值作为取向的方向生长。 在具有纤锌矿晶体结构的GaN基半导体层的器件中,应变量子阱层的生长方向从纤锌矿晶体结构的{0001}方向倾斜至少1°。 在具有锌辉石晶体结构的GaN基半导体层的器件中,应变量子阱层的生长取向从闪锌矿晶体结构的{111}方向倾斜至少1°。 在本发明的优选实施例中,选择生长方向以最小化应变量子阱层中的压电场。

Patent Agency Ranking