Abstract:
A method of manufacturing a memory device includes: providing a substrate; forming in a cell region a channel extending in a direction perpendicular to an upper surface of the substrate and a plurality of gate electrode layers and a plurality of insulating layers stacked alternatingly on the substrate to be adjacent to the channel; forming a plurality of circuit elements on the substrate at a peripheral circuit region disposed at a periphery of the cell region; and forming an interlayer insulating layer on the substrate in the cell region and the peripheral circuit region, the interlayer insulating layer including a first, bottom interlayer insulating layer covering the plurality of circuit elements and at least a portion of the plurality of gate electrode layers, and a second, top interlayer insulating layer disposed on the first interlayer insulating layer.
Abstract:
An exemplary embodiment of the present invention relates to a light emitting diode (LED) including a substrate, a first nitride semiconductor layer arranged on the substrate, an active layer arranged on the first nitride semiconductor layer, a second nitride semiconductor layer arranged on the active layer, a third nitride semiconductor layer disposed between the first nitride semiconductor layer or between the second nitride semiconductor layer and the active layer, the third nitride semiconductor layer comprising a plurality of scatter elements within the third nitride semiconductor layer, and a distributed Bragg reflector (DBR) comprising a multi-layered structure, the substrate being arranged between the DBR and the third nitride semiconductor layer.
Abstract:
Disclosed are enamel varnish compositions for an enamel wire and an enamel wire using the same. The present invention relates to enamel varnish compositions for an enamel wire in which a polymeric resin component is included in an organic solvent, wherein the polymeric resin component includes a first polyamideimide resin; and a second resin having polyamideimide in which a triazine ring is introduced into a major chain. The enamel wire, in which such a coating pigment composition is applied to the innermost layer, has the increased adhesivity of the insulated coating layer to the conducting wire, as well as the excellent physical properties such as the wear resistance and flexibility, etc.
Abstract:
A gate pattern is disclosed that includes a semiconductor substrate, a lower conductive pattern, an upper conductive pattern, and a sidewall conductive pattern. The lower conductive pattern is on the substrate. The insulating pattern is on the lower conductive pattern. The upper conductive pattern is on the insulating pattern opposite to the lower conductive pattern. The sidewall conductive pattern is on at least a portion of sidewalls of the upper conductive pattern and the lower conductive pattern. The sidewall conductive pattern electrically connects the upper conductive pattern and the lower conductive pattern. An upper edge portion of the lower conductive pattern may be recessed relative to a lower edge portion of the lower conductive pattern to define a ledge thereon. The sidewall conductive pattern may be directly on the ledge and sidewall of the recessed upper edge portion of the lower conductive pattern.
Abstract:
A semiconductor device includes tunneling insulating layers on active regions of a substrate, floating gate electrodes on the tunneling insulating layers, an isolation trench within the substrate and the isolation trench defines the active region, spaces the tunneling insulating layers, and isolates the floating gate electrodes. A bottom of the isolation trench is directly in contact with the substrate. The semiconductor device further includes a lower insulating layer on the floating gate electrodes, and a middle insulating layer, an upper insulating layer, and a control gate electrode stacked on the lower insulating layer. The lower insulating layer is configured to hermetically seal a top portion of the isolation trench to define and directly abut an air gap within the isolation trench.
Abstract:
The present invention provides a method of fabricating a semiconductor substrate and a method of fabricating a light emitting device. The method includes forming a first semiconductor layer on a substrate, forming a metallic material layer on the first semiconductor layer, forming a second semiconductor layer on the first semiconductor layer and the metallic material layer, wherein a void is formed in a first portion of the first semiconductor layer under the metallic material layer during formation of the second semiconductor layer, and separating the substrate from the second semiconductor layer by etching at least a second portion of the first semiconductor layer using a chemical solution.
Abstract:
A method is provided for controlling a device by a portable terminal in a device automation system. Upon detecting an execution request for a single remote control mode for remotely controlling a device, the portable terminal sends a single remote control mode execution request message for requesting to execute the single remote control mode, to the device. Upon receiving from the device a single remote control mode execution response message being responsive to the single remote control mode execution request message, the portable terminal switches an operation mode thereof to the single remote control mode. Upon receiving from the device a device data message including device data output by the device, the portable terminal outputs the device data. Upon detecting a remote control command to remotely control the device while outputting the device data, the portable terminal sends a remote control message including the remote control command to the device.
Abstract:
The present invention provides a method of fabricating a semiconductor substrate and a method of fabricating a light emitting device. The method includes forming a first semiconductor layer on a substrate, forming a metallic material layer on the first semiconductor layer, forming a second semiconductor layer on the first semiconductor layer and the metallic material layer, wherein a void is formed in a first portion of the first semiconductor layer under the metallic material layer during formation of the second semiconductor layer, and separating the substrate from the second semiconductor layer by etching at least a second portion of the first semiconductor layer using a chemical solution.
Abstract:
A power line communication (PLC) method includes determining whether a destination communication apparatus to receive a data packet can directly communicate without using a repeater, transmitting the data packet to the destination communication apparatus when the destination communication apparatus can directly communicate without using the repeater, and transmitting the data packet to the repeater when the destination communication apparatus cannot directly communicate without using the repeater, and a power line communication (PLC) apparatus to perform the method.
Abstract:
An electronic circuit apparatus for compensating for a process variation of a resistor in an electronic circuit is provided. The electronic circuit includes a detecting part for generating a tune voltage corresponding to a process variation value of the at least one resistor, and a compensating part for compensating for a process variation of the at least one resistor using the tune voltage.