Abstract:
A memory device includes a substrate having common source regions thereon, common source lines extending along a surface of the substrate and contacting the common source regions, respectively, and channel structures extending away from the surface of the substrate between the common source lines. The common source lines define a unit cell of the memory device therebetween. The memory device further includes an electrode stack structure having interlayer insulating layers and conductive electrode layers that are alternately stacked along sidewalls of the channel structures. The conductive electrode layers define respective gates of selection transistors and memory cell transistors of the memory device. An isolation insulating layer, which includes a portion of a sacrificial layer, is disposed between adjacent ones of the interlayer insulating layers in the stack structure. The isolation insulating layer divides at least one of the conductive electrode layers in the stack structure into electrically separate portions.
Abstract:
A vertical memory device includes a substrate, a channel, gate lines and a connecting portion. A plurality of the channels extend in a first direction which is vertical to a top surface of a substrate. A plurality of the gate lines are stacked in the first direction to be spaced apart from each other and extend in a second, lengthwise direction, each gate line intersecting a set of channels and surrounding outer sidewalls of each channel of the set of channels. The gate lines forms a stepped structure which includes a plurality of vertical levels. A connecting portion connects a group of gate lines of the plurality of gate lines located at the same vertical level, the connecting portion diverging from the second direction in which the gate lines of the group of gate lines extend.
Abstract:
According to example embodiments of inventive concepts, a semiconductor device includes: a substrate, and a stacked structure including interlayer insulating layers and gate electrodes alternately stacked on the substrate. The stacked structure defines a through-hole over the substrate. The gate electrodes each include a first portion between the through-hole and a second portion of the gate electrodes. A channel pattern may be in the through-hole. A tunneling layer may surround the channel pattern. A charge trap layer may surround the tunneling layer, and protective patterns may surround the first portions of the gate electrodes. The protective patterns may be between the first portions of the gate electrodes and the charge trap layer.
Abstract:
Disclosed herein is a high efficiency light emitting diode. The light emitting diode includes: a semiconductor stack positioned over a support substrate; a reflective metal layer positioned between the support substrate and the semiconductor stack to ohmic-contact a p-type compound semiconductor layer of the semiconductor stack and having a groove exposing the semiconductor stack; a first electrode pad positioned on an n-type compound semiconductor layer of the semiconductor stack; an electrode extension extending from the first electrode pad and positioned over the groove region; and an upper insulating layer interposed between the first electrode pad and the semiconductor stack. In addition, the n-type compound semiconductor layer includes an n-type contact layer, and the n-type contact layer has a Si doping concentration of 5 to 7×1018/cm3 and a thickness in the range of 5 to 10 um.
Abstract:
A vertical memory device includes a substrate, a channel, gate lines and a connecting portion. A plurality of the channels extend in a first direction which is vertical to a top surface of a substrate. A plurality of the gate lines are stacked in the first direction to be spaced apart from each other and extend in a second, lengthwise direction, each gate line intersecting a set of channels and surrounding outer sidewalls of each channel of the set of channels. The gate lines forms a stepped structure which includes a plurality of vertical levels. A connecting portion connects a group of gate lines of the plurality of gate lines located at the same vertical level, the connecting portion diverging from the second direction in which the gate lines of the group of gate lines extend.
Abstract:
A light emitting device having a plurality of light emitting cells is disclosed. The light emitting device comprises a substrate; a plurality of light emitting cells positioned on the substrate to be spaced apart from one another, each of the light emitting cells comprising a p-type lower semiconductor layer, an active layer and an n-type upper semiconductor layer; p-electrodes positioned to be spaced apart from one another between the substrate and the light emitting cells, the respective p-electrodes being electrically connected to the corresponding lower semiconductor layers, each of the p-electrodes having an extension extending toward adjacent one of the light emitting cells; n-electrodes disposed on upper surfaces of the respective light emitting cells, wherein a contact surface of each of the n-electrodes electrically contacting with each light emitting cell exists both sides of any straight line that bisects the light emitting cell across the center of the upper surface of the light emitting cell; a side insulating layer for covering sides of the light emitting cells; and wires for connecting the p-electrodes and the n-electrodes, the wires being spaced apart from the sides of the light emitting cells by the side insulating layer.
Abstract:
A wiring structure includes a first plug extending through a first insulating interlayer on a substrate, a first wiring extending through a second insulating interlayer on the first insulating interlayer and the first wiring is electrically connected to the first plug, a diffusion barrier layer pattern on the first wiring and on the second insulating interlayer, a portion of the second insulating interlayer being free of being covered by the diffusion barrier layer pattern, a second plug extending through the diffusion barrier layer pattern, the second plug is in contact with the first wiring, and a second wiring electrically connected to the second plug.
Abstract:
An approach is provided for fabricating a light emitting diode using a laser lift-off apparatus. The approach includes growing an epitaxial layer including a first conductive-type compound semiconductor layer, an active layer and a second conductive-type compound semiconductor layer on a first substrate, bonding a second substrate, having a different thermal expansion coefficient from that of the first substrate, to the epitaxial layers at a first temperature of the first substrate higher than a room temperature, and separating the first substrate from the epitaxial layer by irradiating a laser beam through the first substrate at a second temperature of the first substrate higher than the room temperature but not more than the first temperature.
Abstract:
Disclosed are a light emitting device and a method of fabricating the same. The light emitting device comprises a substrate. A plurality of light emitting cells are disposed on top of the substrate to be spaced apart from one another. Each of the light emitting cells comprises a first upper semiconductor layer, an active layer, and a second lower semiconductor layer. Reflective metal layers are positioned between the substrate and the light emitting cells. The reflective metal layers are prevented from being exposed to the outside.
Abstract:
An exemplary embodiment of the present invention relates to a light emitting diode (LED) including a substrate, a first nitride semiconductor layer arranged on the substrate, an active layer arranged on the first nitride semiconductor layer, a second nitride semiconductor layer arranged on the active layer, a third nitride semiconductor layer disposed between the first nitride semiconductor layer or between the second nitride semiconductor layer and the active layer, the third nitride semiconductor layer comprising a plurality of scatter elements within the third nitride semiconductor layer, and a distributed Bragg reflector (DBR) comprising a multi-layered structure, the substrate being arranged between the DBR and the third nitride semiconductor layer.