Abstract:
A method and apparatus for heating and cooling a substrate are provided. A chamber is provided that comprises a heating mechanism adapted to heat a substrate positioned proximate the heating mechanism, a cooling mechanism spaced from the heating mechanism and adapted to cool a substrate positioned proximate the cooling mechanism, and a transfer mechanism adapted to transfer a substrate between the position proximate the heating mechanism and the position proximate the cooling mechanism.
Abstract:
A method of treating a substrate. The method comprises forming a metal-containing layer on at least a selected portion of the substrate during a substrate cleaning process.
Abstract:
The present invention discloses a system that provides for electroless deposition performed in-situ with an electroplating process to minimize oxidation and other contaminants prior to the electroplating process. The system allows the substrate to be transferred from the electroless deposition process to the electroplating process with a protective coating to also minimize oxidation. The system generally includes a mainframe having a mainframe substrate transfer robot, a loading station disposed in connection with the mainframe, one or more processing facilities disposed in connection with the mainframe, an electroless supply fluidly connected to the one or more processing applicators and optionally includes a spin-rinse-dry (SRD) station, a rapid thermal anneal chamber and a system controller for controlling the deposition processes and the components of the electro-chemical deposition system.
Abstract:
The present invention provides an electro-chemical deposition system that is designed with a flexible architecture that is expandable to accommodate future designs and gap fill requirements and provides satisfactory throughput to meet the demands of other processing systems. The electro-chemical deposition system generally comprises a mainframe having a mainframe wafer transfer robot, a loading station disposed in connection with the mainframe, one or more processing cells disposed in connection with the mainframe, and an electrolyte supply fluidly connected to the one or more electrical processing cells. Preferably, the electro-chemical deposition system includes a spin-rinse-dry (SRD) station disposed between the loading station and the mainframe, a rapid thermal anneal chamber attached to the loading station, and a system controller for controlling the electro-chemical deposition process and the components of the electro-chemical deposition system.
Abstract:
This invention comprises improvements in the ways in which spin-on dielectric layers are cured. A semiconductor wafer is coated with a precursor for a spin-on dielectric material, and after the solution is thinned and evened, the wafer is placed in a curing oven, optionally containing an inert gas, and pre-heated to a temperature below which excessive thermomechanical stresses and/or oxidation are not created in the semiconductor wafer. The temperature within the curing oven is then raised to a curing temperature, and thereafter the temperature is slowly lowered to prevent the formation of stress cracks and the loss of dielectric function of the thin film. The curing method of this invention is useful for the manufacture of semiconductor devices employing a variety of spin-on materials.
Abstract:
A method of forming low dielectric insulation between those pairs of conductive lines, of a level of interconnection for integrated circuits, having a gap of about 0.5 microns or less by depositing a nonconformal source with a poor step function for the insulating material, such as silane (SiH.sub.4) as the silicon (Si) source for silicon dioxide (SiO.sub.2), so as to create, in the gap, a large void whose dielectric constant is slightly greater than 1. After the formation of the void in the 0.5 microns or less gaps, the deposited nonconformal material is etched either simultaneously or sequentially along with deposition to fill the remaining gaps with void free insulation. The surface of the deposited insulating material is planarized at the desired thickness. Alternatively, a thin conformal insulating layer is first deposited as a liner on the conductive lines. The resulting structure of the interconnection level comprises a layer of insulation between and on the conductive lines with the dielectric constant of the insulation between the pairs of conductive lines with gap of 0.5 or less being, in combination with the void, at least about 3 or lower, and all of the remaining gaps are filled with void free insulating material with a dielectric constant of greater than about 3.5.
Abstract:
A Ti.sub.x N.sub.y layer, not necessarily stoichiometric, is interposed between a titanium or aluminum interconnect layer to improve adhesion and prevent re-entrant undercutting and lifting of the interconnect layer during the process of patterning and plasma etching to form interconnect lines on a substrate, such as an oxide.
Abstract:
A multilayer semiconductor structure includes a conductive via. The conductive via includes a pellet of metal having a high resistance to electromigration. The pellet is made from a conformal layer of copper or gold deposited over the via to form a copper or gold reservoir or contact located in the via. A barrier layer is provided between the reservoir and an insulating layer to prevent the pellet from diffusing into the insulating layer. The pellet can be formed by selective deposition or by etching a conformal layer. The conformal layer can be deposited by sputtering, collimated sputtering, chemical vapor deposition (CVD), dipping, evaporating, or by other means. The barrier layer and pellet may be etched by anisotropic dry etching, plasma-assisted etching, or other layer removal techniques.
Abstract:
A semiconductor device containing an interconnection structure having a reduced interwiring spacing is produced by a modified dual damascene process. In one embodiment, an opening for a via is initially formed in a second insulative layer above a first insulative layer with an etch stop layer therebetween. A larger opening for a trench is then formed in the second insulative layer while simultaneously extending the via opening through the etch stop layer and first insulative layer. The trench and via are then simultaneously filled with conductive material.