摘要:
An interconnect is provided in a first insulating layer and the upper surface of the interconnect is higher than the upper surface of the first insulating layer. An air gap is disposed between the interconnect and the first insulating layer. An etching stopper film is formed over the first insulating layer, the air gap, and the interconnect. A second insulating layer is formed over the etching stopper film. A via is provided in the second insulating layer and is connected to the interconnect. A portion of the etching stopper film that is disposed over the air gap is thicker than another portion that is disposed over the interconnect.
摘要:
A first gas including a silicon-containing compound is introduced into a vacuum chamber, to expose a semiconductor substrate placed in the chamber to the first gas atmosphere (silicon processing step). Then the pressure inside the vacuum chamber is reduced to a level lower than the pressure at the time of starting the silicon processing step (depressurizing step). Thereafter, a second gas including a nitrogen-containing compound is introduced into the vacuum chamber, and the semiconductor substrate is irradiated with the second gas plasma (nitrogen plasma step).
摘要:
When forming a silicon nitride film to protect and insulate a surface on which a silicon substrate has been ground or polishing, by use of a mixed gas containing SiH4, N2, and NH3 as a reaction gas, a film is formed by a single-frequency parallel-plate plasma CVD method. Thereby, even when the film forming temperature is made not more than an allowable temperature limit of an adhesive to adhere a support (for example, approximately 100° C. or less, which is an allowable temperature limit when the adhesive is an ultraviolet curing resin), a high-quality film without exfoliation in a CMP step of the following step and with less leakage can be formed. This high-quality film is, if being prescribed by a refractive index, a film whose refractive index with respect to a wavelength of 633 nm is approximately 1.8 through 1.9.
摘要翻译:当形成氮化硅膜以保护和绝缘其上已经研磨或抛光硅衬底的表面时,通过使用含有SiH 4 N 2 N 2的混合气体, 和NH 3作为反应气体,通过单频平行板等离子体CVD法形成膜。 因此,即使当成膜温度不大于粘合剂的粘合剂的允许温度极限时(例如约100℃或更低,这是当粘合剂是紫外线固化树脂时的允许温度极限) ),可以形成在后续步骤的CMP步骤中没有剥离并且具有较少泄漏的高质量膜。 如果由折射率规定,则该高品质膜的折射率相对于633nm的折射率为1.8〜1.9左右。
摘要:
When forming a silicon nitride film to protect and insulate a surface on which a silicon substrate has been ground or polishing, by use of a mixed gas containing SiH4, N2, and NH3 as a reaction gas, a film is formed by a single-frequency parallel-plate plasma CVD method. Thereby, even when the film forming temperature is made not more than an allowable temperature limit of an adhesive to adhere a support (for example, approximately 100° C. or less, which is an allowable temperature limit when the adhesive is an ultraviolet curing resin), a high-quality film without exfoliation in a CMP step of the following step and with less leakage can be formed. This high-quality film is, if being prescribed by a refractive index, a film whose refractive index with respect to a wavelength of 633 nm is approximately 1.8 through 1.9.
摘要翻译:当形成氮化硅膜以保护和绝缘其上已经研磨或抛光硅衬底的表面时,通过使用含有SiH 4 N 2 N 2的混合气体, 和NH 3作为反应气体,通过单频平行板等离子体CVD法形成膜。 因此,即使当成膜温度不大于粘合剂的粘合剂的允许温度极限时(例如约100℃或更低,这是当粘合剂是紫外线固化树脂时的允许温度极限) ),可以形成在后续步骤的CMP步骤中没有剥离并且具有较少泄漏的高质量膜。 如果由折射率规定,则该高品质膜的折射率相对于633nm的折射率为1.8〜1.9左右。
摘要:
The present invention reduces the effective dielectric constant of the interlayer insulating film while inhibiting the decrease of the reliability of the semiconductor device, which otherwise is caused by a moisture absorption. A copper interconnect comprising a Cu film 209 is formed in multilayer films comprising a L-Ox™ film 203 and a SiO2 film 204. Since the L-Ox™ film 203 comprises ladder-shaped siloxane hydride structure, the film thickness and the film characteristics are stable, and thus changes in the film quality is scarcely occurred during the manufacturing process.
摘要:
The object of the present invention is to improve the interfacial adhesion between the film with low dielectric constant and protective film, without damaging the excellent dielectric, flatness and gap-filling characteristics of the organic material of low dielectric constant, and for that purpose there is provided a wiring structure with the copper film embedded in the insulation film of the wiring layer, wherein the insulation film of the wiring layer is of a multi-layered structure with the laminated methyl silisesquioxane (MSQ) film, methylated hydrogen silisesquioxane (MHSQ) film and silicon oxide film.
摘要:
A semiconductor device 200 comprises a SiCN film 202 formed on a semiconductor substrate (not shown), a first SiOC film 204 formed thereon, a SiCN film 208 formed thereon, a second SiOC film 210 formed thereon, a SiO2 film 212 and a SiCN film 214 formed thereon. The first SiOC film 204 has a barrier metal layer 216 and via 218 formed therein, and the second SiOC film 210 has a barrier metal layer 220 and wiring metal layer 222 formed therein. Carbon content of the second SiOC film 210 is adjusted larger than that of the first SiOC film 204. This makes it possible to improve adhesiveness of the insulating interlayer with other insulating layers, while keeping a low dielectric constant of the insulating interlayer.
摘要:
In a semiconductor device, an insulating interlayer having a groove is formed on an insulating underlayer. A silicon-diffused metal layer including no metal silicide is buried in the groove. A metal diffusion barrier layer is formed on the silicon-diffused metal layer and the insulating interlayer.
摘要:
A method of manufacturing a semiconductor device having a damascene structure contains a process of forming a first interlayer insulating film (6) and a second interlayer insulating film (4) formed of a low dielectric-constant film on a substrate, forming via holes (9) by using a first resist pattern (1a) formed on the second interlayer insulating film, conducting an organic peeling treatment using organic peeling liquid containing amine components and then forming a second resist pattern (1b) on the second interlayer insulating film. After the wet treatment, before a second antireflection coating (2b) is coated so as to be located below the second resist pattern is coated, at least one of an annealing treatment, a plasma treatment, a UV treatment and an organic solvent treatment is carried out to remove amine components which inhibit the catalysis reaction of acid occurring in the resist at the light exposure, thereby preventing degradation of the resolution of the second resist pattern (1b).
摘要:
A method of manufacturing a semiconductor device having a damascene structure contains a process of forming a first interlayer insulating film and a second interlayer insulating film formed of a low dielectric constant film on a substrate, forming via holes by using a first resist pattern formed on the second interlayer insulating film, conducting an organic peeling treatment using organic peeling liquid containing amine components and then forming a second resist pattern on the second interlayer insulating film. After the wet treatment before a second antireflection coating is coated so as to be located below the second resist pattern is coated, at least one of an annealing treatment, a plasma treatment, a UV treatment and an organic solvent treatment is carried out to remove amine components which inhibit the catalysis reaction of acid occurring in the resist at the light exposure, thereby preventing degradation of the resolution of the second resist pattern.