摘要:
Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment of the cluster tool, grouping substrates together, and transferring and processing the substrates in groups of two or more, improves system throughput, and reduces the number of moves a robot has to make to transfer a batch of substrates between the processing chambers, thus reducing wear on the robot and increasing system reliability. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
摘要:
A method and apparatus for forming an electrochemical layer of a thin film battery is provided. A precursor mixture comprising precursor particles dispersed in a carrying medium is activated in an activation chamber by application of an electric field to ionize at least a portion of the precursor mixture. The activated precursor mixture is then mixed with a combustible gas mixture to add thermal energy to the precursor particles, converting them to nanocrystals, which deposit on a substrate. A second precursor may be blended with the nanocrystals as they deposit on the surface to enhance adhesion and conductivity.
摘要:
A method and apparatus is provided for preparing a substrate for forming electronic devices incorporating III/V compound semiconductors. Elemental halogen gases, hydrogen halide gases, or other halogen or halide gases, are contacted with liquid or solid group III metals to form precursors which are reacted with nitrogen sources to deposit a nitride buffer layer on the substrate. The buffer layer, which may be a transition layer, may incorporate more than one group III metal, and may be deposited with amorphous or crystalline morphology. An amorphous layer may be partially or fully recrystallized by thermal treatment. Instead of a layer, a plurality of discrete nucleation sites may be formed, whose size, density, and distribution may be controlled. The nitrogen source may include reactive nitrogen compounds as well as active nitrogen from a remote plasma source. The composition of the buffer or transition layer may also vary with depth according to a desired profile.
摘要:
This invention relates to a printing apparatus and a conveyance control method capable of simultaneously operating plural encoder sensors and executing more accurate printing medium conveyance control. A first encoder sensor provided adjacent to a first conveyance roller detects the conveyance amount of a printing medium by the first conveyance roller provided in the conveyance path of the printing medium. A second encoder sensor provided adjacent to a second conveyance roller detects the conveyance amount of the printing medium by the second conveyance roller provided in the conveyance path of the printing medium at the downstream side from the first conveyance roller in the conveyance direction of the printing medium. For example, conveyance of the printing medium is controlled on the basis of the output signals from the first and second encoder sensors when a tail end of the printing medium is located adjacent to the first conveyance roller.
摘要:
A recording apparatus for forming images using a recording head includes a feeding roller, a conveying roller, a conveyance control unit, and a recording control unit. The conveyance control unit performs a conveying operation a number of times after the trailing end of a sheet reaches a predetermined position defined between the feeding roller and the conveying roller such that the trailing end of the sheet is disposed in a predetermined range upstream of the conveying roller in a sheet conveying direction after the conveying operations. At least one of the conveying operations performed a number of times is performed based on a distance from the position of the trailing end of the sheet to the position of the conveying roller.
摘要:
Embodiments of the present invention provide method and apparatus for automatically loading substrates to a substrate carrier tray. On embodiment of the present invention provides an automatic substrate loader comprises a cassette handling mechanism, a substrate aligner configured to align a substrate, and a carrier tray aligner. The automatic substrate loader further comprises a first robot configured to transfer substrates between the substrate aligner and the substrate storage cassettes, and a second robot configured to transfer substrates between the substrate aligner and the carrier tray disposed on the carrier tray aligner.
摘要:
Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. Embodiments also provide for a method and apparatus that are used to improve the coater chamber, the developer chamber, the post exposure bake chamber, the chill chamber, and the bake chamber process results. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
摘要:
A rolling bearing assembly includes: an outer ring member; an inner ring member; a hub wheel formed with a flange at one axial end thereof; and a seal member for sealing a space between one axial end of the outer ring member and an inside surface of the flange, which axially opposes the one end of the outer ring member. The seal member includes: a cylindrical core fitted on the one axial end of the outer ring member and axially extended from the one end toward the flange; and an annular lip portion secured to the core and formed from an elastic material as axially extended from the core to the inside surface of the flange.