Abstract:
This disclosure provides a method of fabricating a semiconductor device layer and associated memory cell structures. By performing a surface treatment process (such as ion bombardment) of a semiconductor device layer to create defects having a deliberate depth profile, one may create multistable memory cells having more consistent electrical parameters. For example, in a resistive-switching memory cell, one may obtain a tighter distribution of set and reset voltages and lower forming voltage, leading to improved device yield and reliability. In at least one embodiment, the depth profile is selected to modulate the type of defects and their influence on electrical properties of a bombarded metal oxide layer and to enhance uniform defect distribution.
Abstract:
Non linear current response circuits can be used in embedded resistive memory cell for reducing power consumption, together with improving reliability of the memory array. The non linear current response circuits can include two back to back leaky PIN diodes, two parallel anti-directional PIN diodes, two back to back Zener-type metal oxide diodes, or ovonic switching elements, along with current limiting resistor for standby power reduction at the low voltage region. Also, the proposed embedded ReRAM implementation methods based upon 1T2D1R scheme can be integrated into the advanced FEOL process technologies including vertical pillar transistor and/or 3D fin-shaped field effect transistor (FinFET) for realizing a highly compact cell density.
Abstract:
Embodiments described herein provide systems and methods for performing vapor deposition processes on substrates. A housing defining a processing chamber is provided. A substrate support is positioned within the processing chamber and configured to support a substrate. A fluid supply system including a plurality precursor sources is included. A fluid conduit assembly is coupled to the fluid supply system and configurable to selectively expose a first site-isolated region defined on the substrate to the respective precursors of a first and a second of the plurality of precursor sources and selectively expose a second site-isolated region defined on the substrate to the respective precursors of a third and a fourth of the plurality of precursor sources.
Abstract:
Non-volatile resistive-switching memories are described, including a memory element having a first electrode, a second electrode, a metal oxide between the first electrode and the second electrode. The metal oxide switches using bulk-mediated switching, has a bandgap greater than 4 electron volts (eV), has a set voltage for a set operation of at least one volt per one hundred angstroms of a thickness of the metal oxide, and has a leakage current density less than 40 amps per square centimeter (A/cm2) measured at 0.5 volts (V) per twenty angstroms of the thickness of the metal oxide.
Abstract:
Embodiments of the invention generally include a method of forming a nonvolatile memory device that contains a resistive switching memory element that has an improved device switching performance and lifetime, due to the addition of a current limiting component disposed therein. In one embodiment, the current limiting component comprises at least one layer of resistive material that is configured to improve the switching performance and lifetime of the formed resistive switching memory element. The electrical properties of the formed current limiting layer, or resistive layer, are configured to lower the current flow through the variable resistance layer during the logic state programming steps (i.e., “set” and “reset” steps) by adding a fixed series resistance in the formed resistive switching memory element found in the nonvolatile memory device. Typically, resistive switching memory elements may be formed as part of a high-capacity nonvolatile memory integrated circuit, which can be used in various electronic devices, such as digital cameras, mobile telephones, handheld computers, and music players.
Abstract:
A nonvolatile resistive memory element includes an oxygen-gettering layer. The oxygen-gettering layer is formed as part of an electrode stack, and is more thermodynamically favorable in gettering oxygen than other layers of the electrode stack. The Gibbs free energy of formation (ΔfG°) of an oxide of the oxygen-gettering layer is less (i.e., more negative) than the Gibbs free energy of formation of an oxide of the adjacent layers of the electrode stack. The oxygen-gettering layer reacts with oxygen present in the adjacent layers of the electrode stack, thereby preventing this oxygen from diffusing into nearby silicon layers to undesirably increase an SiO2 interfacial layer thickness in the memory element and may alternately be selected to decrease such thickness during subsequent processing.
Abstract:
This disclosure provides a nonvolatile memory device and related methods of manufacture and operation. The device may include one or more resistive random access memory (ReRAM) approaches to provide a memory device with more predictable operation. In particular, the forming voltage required by particular designs may be reduced through the use of a barrier layer, a reverse polarity forming voltage pulse, a forming voltage pulse where electrons are injected from a lower work function electrode, or an anneal in a reducing environment. One or more of these techniques may be applied, depending on the desired application and results.
Abstract:
Nonvolatile memory elements including resistive switching metal oxides may be formed in one or more layers on an integrated circuit. Each memory element may have a first conductive layer, a metal oxide layer, and a second conductive layer. Electrical devices such as diodes may be coupled in series with the memory elements. The first conductive layer may be formed from a metal nitride. The metal oxide layer may contain the same metal as the first conductive layer. The metal oxide may form an ohmic contact or a Schottky contact with the first conductive layer. The second conductive layer may form an ohmic contact or Schottky contact with the metal oxide layer. The first conductive layer, the metal oxide layer, and the second conductive layer may include sublayers. The second conductive layer may include an adhesion or barrier layer and a workfunction control layer.
Abstract:
Programming a resistive memory structure at a temperature well above the operating temperature can create a defect distribution with higher stability, leading to a potential improvement of the retention time. The programming temperature can be up to 100 C above the operating temperature. The memory chip can include embedded heaters in the chip package, allowing for heating the memory cells before the programming operations.
Abstract:
Embodiments described herein provide improvements to indium-gallium-zinc oxide devices, such as amorphous IGZO thin film transistors, and methods for forming such devices. A relatively thin a-IGZO channel may be utilized. A plasma treatment chemical precursor passivation may be provided to the front-side a-IGZO interface. High-k dielectric materials may be used in the etch-stop layer at the back-side a-IGZO interface. A barrier layer may be formed above the gate electrode before the gate dielectric layer is deposited. The conventional etch-stop layer, typically formed before the source and drain regions are defined, may be replaced by a pre-passivation layer that is formed after the source and drain regions are defined and may include multiple sub-layers.