Defect transferred and lattice mismatched epitaxial film
    71.
    发明授权
    Defect transferred and lattice mismatched epitaxial film 有权
    缺陷转移和晶格失配外延膜

    公开(公告)号:US08872225B2

    公开(公告)日:2014-10-28

    申请号:US13722824

    申请日:2012-12-20

    Abstract: An embodiment uses a very thin layer nanostructure (e.g., a Si or SiGe fin) as a template to grow a crystalline, non-lattice matched, epitaxial (EPI) layer. In one embodiment the volume ratio between the nanostructure and EPI layer is such that the EPI layer is thicker than the nanostructure. In some embodiments a very thin bridge layer is included between the nanostructure and EPI. An embodiment includes a CMOS device where EPI layers covering fins (or that once covered fins) are oppositely polarized from one another. An embodiment includes a CMOS device where an EPI layer covering a fin (or that once covered a fin) is oppositely polarized from a bridge layer covering a fin (or that once covered a fin). Thus, various embodiments are disclosed from transferring defects from an EPI layer to a nanostructure (that is left present or removed). Other embodiments are described herein.

    Abstract translation: 一个实施例使用非常薄的层纳米结构(例如,Si或SiGe鳍)作为模板来生长晶体,非晶格匹配的外延(EPI)层。 在一个实施方案中,纳米结构和EPI层之间的体积比使得EPI层比纳米结构厚。 在一些实施例中,在纳米结构和EPI之间包括非常薄的桥接层。 一个实施例包括一个CMOS器件,其中覆盖翅片(或一旦被覆盖的翅片)的EPI层彼此相反地极化。 一个实施例包括一个CMOS器件,其中覆盖翅片(或一旦被覆盖的翅片)的EPI层与覆盖翅片(或一旦被覆盖的翅片)的桥接层相反地偏振。 因此,从EPI层转移到纳米结构(剩下的存在或去除)的缺陷中公开了各种实施例。 本文描述了其它实施例。

    Stacked source-drain-gate connection and process for forming such

    公开(公告)号:US11916118B2

    公开(公告)日:2024-02-27

    申请号:US18130824

    申请日:2023-04-04

    CPC classification number: H01L29/41741 H01L29/41775

    Abstract: A device is disclosed. The device includes a first epitaxial region, a second epitaxial region, a first gate region between the first epitaxial region and a second epitaxial region, a first dielectric structure underneath the first epitaxial region, a second dielectric structure underneath the second epitaxial region, a third epitaxial region underneath the first epitaxial region, a fourth epitaxial region underneath the second epitaxial region, and a second gate region between the third epitaxial region and a fourth epitaxial region and below the first gate region. The device also includes, a conductor via extending from the first epitaxial region, through the first dielectric structure and the third epitaxial region, the conductor via narrower at an end of the conductor via that contacts the first epitaxial region than at an opposite end.

    STEPWISE INTERNAL SPACERS FOR STACKED TRANSISTOR STRUCTURES

    公开(公告)号:US20230132749A1

    公开(公告)日:2023-05-04

    申请号:US17517065

    申请日:2021-11-02

    Abstract: Techniques are provided herein to form semiconductor devices having a stacked transistor configuration. In an example, an upper (e.g., n-channel) device and a lower (e.g., p-channel) device may both be gate-all-around (GAA) transistors each having any number of nanoribbons extending in the same direction where the upper device is located vertically above the lower device. According to some embodiments, an internal spacer structure extends between the nanoribbons of the upper device and the nanoribbons of the lower device along the vertical direction, where the spacer structure has a stepwise or an otherwise outwardly protruding profile as it extends between the nanoribbons of the upper device and the lower device. Accordingly, in one example, a gate structure formed around the nanoribbons of both the n-channel device and the p-channel device exhibits a greater width in the region between the nanoribbons of the n-channel device and the nanoribbons of the p-channel device.

Patent Agency Ranking