摘要:
The present invention provides a semiconductor device having interconnects, reduced in leakage current between the interconnects and improved in the TDDB characteristic, which comprises an insulating interlayer 108, and interconnects 160 filled in grooves formed in the insulating interlayer, comprising a copper layer 124 mainly composed of copper, having the thickness smaller than the depth of the grooves, and a low-expansion metal layer 140, which is a metal layer having a heat expansion coefficient smaller than that of the copper layer, formed on the copper layer.
摘要:
Disclosed is a semiconductor device having a precision-worked dual damascene structure. A semiconductor substrate is obtained by forming at least a first interlayer film, an etching stopper film, a second interlayer film, a first hard mask and a second hard mask on a substrate in the order mentioned, the second hard mask being formed to have a trench pattern. At least a light absorbing sacrificial film, which has an etching rate different from that of a photoresist and is removable by use of a stripping solution, is formed on the semiconductor substrate in such a manner that the overall surface thereof will be flat. The photoresist is formed on the light absorbing sacrificial film and has an aperture pattern whose opening width is less than that of the trench pattern. At least the light absorbing sacrificial film, the first hard mask and the second interlayer film are etched selectively, one after the other, using the photoresist as an etching mask.
摘要:
A method of fabricating a semiconductor device using a PECVD method is provided, which improves the adhesion strength of a deposited dielectric layer to an underlying layer and the reliability of the deposited dielectric layer. After placing a substrate in a chamber, a gas having a thermal conductivity of 0.1 W/mK or greater (e.g., H2 or He) is introduced into the chamber, thereby contacting the gas with the substrate for stabilization of a temperature of the substrate. A desired dielectric layer is deposited on or over the substrate in the chamber using a PECVD method after the step of introducing the gas. As the desired dielectric layer, a dielectric layer having a low dielectric constant, such as a SiCH, SiCHN, or SiOCH layer, is preferably used.
摘要翻译:提供了使用PECVD方法制造半导体器件的方法,其提高了沉积的介电层对下层的粘附强度和沉积的介电层的可靠性。 在将基板放置在室中之后,将导热率为0.1W / mK以上的气体(例如H 2 H 2或He)引入到室内,从而使气体与基板接触 稳定基板的温度。 在引入气体的步骤之后,使用PECVD方法将期望的电介质层沉积在室中的衬底上或衬底上。 作为所需的介电层,优选使用具有低介电常数的介电层,例如SiCH,SiCHN或SiOCH层。
摘要:
A manufacturing method of a semiconductor device including a step of forming a via hole in an insulation layer including an organic low dielectric film, such as MSQ, SiC, and SiCN, and then embedding a wiring material in the via hole through a barrier metal. According to this method, a plasma treatment is performed after the via hole is formed and before the barrier metal is deposited, using a He/H2 gas capable of replacing groups (methyl groups) made of organic constituents and covering the surface of the exposed organic low dielectric film (MSQ) with hydrogen, or a He gas capable decomposing the groups (methyl groups) without removing organic low dielectric molecules. As a result, the surface of the low dielectric film (MSQ) is reformed to be hydrophilic and adhesion to the barrier metal is hence improved, thereby making it possible to prevent the occurrence of separation of the barrier metal and scratches.
摘要翻译:一种半导体器件的制造方法,包括在包括诸如MSQ,SiC和SiCN的有机低电介质膜的绝缘层中形成通孔的步骤,然后通过阻挡金属将布线材料包埋在通孔中。 根据该方法,使用能够代替由有机成分构成的基团(甲基)的He / H 2气体,在形成通路孔之后和隔离金属沉积之前进行等离子体处理 并用氢气覆盖暴露的有机低介电膜(MSQ)的表面,或者能够分解基团(甲基)而不去除有机低介电分子的He气体。 结果,低电介质膜(MSQ)的表面被重新形成为亲水性,因此提高了与阻挡金属的粘附性,从而可以防止隔离金属的分离和划痕的发生。
摘要:
A semiconductor memory device includes a field-effect transistor with a gate electrode that has been formed over a semiconductor substrate with a ferroelectric layer interposed between the electrode and the substrate. The device includes a first insulating layer, which is insulated against a leakage current more fully than the ferroelectric layer, between the ferroelectric layer and the gate electrode.
摘要:
A method of manufacturing a semiconductor device is to be provided, which improves filling performance of a conductive layer to be formed by an electrolytic plating process in an interconnect trench or a via hole, and achieves a higher in-plane uniformity in bottom-up performance. An electrolytic plating process to fill with a conductive layer at least one of an interconnect trench and a via hole formed in a dielectric layer on a semiconductor substrate includes a first step of executing a plating operation under a predetermined integrated current density, which is a product of a current density representing a current value supplied per unit area of a plating solution containing a material which constitutes the conductive layer and a plating time, and a second step of executing a plating operation under a lower current density than that of the first step.
摘要:
A ferroelectric FET having an interface insulator layer containing ZrO2. The ferroelectric FET includes a gate oxide layer, the interface insulator layer is located on the gate oxide layer, and ferroelectric layered superlattice material is located on the interface insulator layer, The interface insulator layer has a thickness of from 15 to 25 nanometers.
摘要:
An integrated circuit capacitor containing a thin film delectric metal oxide is formed above a silicon germanium substrate. A silicon nitride diffusion barrier layer is deposited on a silicon germanium substrate to prevent evaporation of the substrate in subsequent heating steps. A silicon dioxide stress reduction layer is deposited on the diffusion barrier layer. A bottom electrode is formed on the stress reduction layer, then a liquid precursor is spun on the bottom electrode, dried at about 400° C., and annealed at between 600° C. and 850° C. to form a BST capacitor dielectric. A top electrode is deposited on the dielectric and annealed. The integrated circuit may also include a BiCMOS device, a HBT device or a MOSFET.
摘要:
Source/drain regions for a field effect transistor are defined in a semiconductor substrate with a channel region interposed therebetween. A first gate electrode is formed over the semiconductor substrate with an insulating film sandwiched therebetween and has a gate length shorter than the length of the channel region. A ferroelectric film is formed to cover the first gate electrode and to have both side portions thereof make contact with the insulating film. A second gate electrode is formed to cover the ferroelectric film.
摘要:
A method for forming an interface insulator layer in a ferroelectric FET memory, in which a liquid precursor is applied to a semiconductor substrate. Preferably, the liquid precursor is an enhanced metalorganic decomposition (“EMOD”) precursor, applied using a liquid-source misted deposition technique. Preferably, the EMOD precursor solution applied to the substrate contains metal ethylhexanoates containing metal moieties in relative molar proportions for forming an interface insulator layer containing ZrO2, CeO2, Y2O3 or (Ce1-xZrx)O2, wherein 0≦x≦1.