摘要:
One illustrative method disclosed herein includes removing a portion of a sacrificial sidewall spacer to thereby expose at least a portion of the sidewalls of a sacrificial gate electrode and forming a liner layer on the exposed sidewalls of the sacrificial gate electrode. In this example, the method also includes forming a sacrificial gap fill material above the liner layer, exposing and removing the sacrificial gate electrode to thereby define a gate cavity that is laterally defined by the liner layer, forming a replacement gate structure, removing the sacrificial gap fill material and forming a low-k sidewall spacer adjacent the liner layer. A device is also disclosed that includes a gate cap layer, a layer of silicon nitride or silicon oxynitride positioned on each of two upstanding portions of a gate insulation layer and a low-k sidewall spacer positioned on the layer of silicon nitride or silicon oxynitride.
摘要:
A structure has at least one field effect transistor having a gate stack disposed between raised source drain structures that are adjacent to the gate stack. The gate stack and raised source drain structures are disposed on a surface of a semiconductor material. The structure further includes a layer of field dielectric overlying the gate stack and raised source drain structures and first contact metal and second contact metal extending through the layer of field dielectric. The first contact metal terminates in a first trench formed through a top surface of a first raised source drain structure, and the second contact metal terminates in a second trench formed through a top surface of a second raised source drain structure. Each trench has silicide formed on sidewalls and a bottom surface of at least a portion of the trench. Methods to fabricate the structure are also disclosed.
摘要:
An extremely thin SOI MOSFET device on an SOI substrate is provided with a back gate layer on a Si substrate superimposed by a thin BOX layer; an extremely thin SOI layer (ETSOI) on top of the thin BOX layer; and an FET device on the ETSOI layer having a gate stack insulated by spacers. The thin BOX is formed under the ETSOI channel, and is provided with a thicker dielectric under source and drain to reduce the source/drain to back gate parasitic capacitance. The thicker dielectric portion is self-aligned with the gate. A void within the thicker dielectric portion is formed under the source/drain region. The back gate is determined by a region of semiconductor damaged by implantation, and the formation of an insulating layer by lateral etch and back filling with dielectric.
摘要:
A planar semiconductor device including a semiconductor on insulator (SOI) substrate with source and drain portions having a thickness of less than 10 nm that are separated by a multi-layered strained channel The multi-layer strained channel of the SOI layer includes a first layer with a first lattice dimension that is present on the buried dielectric layer of the SOI substrate, and a second layer of a second lattice dimension that is in direct contact with the first layer of the multi-layer strained channel portion. A functional gate structure is present on the multi-layer strained channel portion of the SOI substrate. The semiconductor device having the multi-layered channel may also be a finFET semiconductor device.
摘要:
An improved trench structure, and method for its fabrication are disclosed. Embodiments of the present invention provide a trench in which the collar portion has an air gap instead of a solid oxide collar. The air gap provides a lower dielectric constant. Embodiments of the present invention can therefore be used to make higher-performance devices (due to reduced parasitic leakage), or smaller devices, due to the ability to use a thinner collar to achieve the same performance as a thicker collar comprised only of oxide (with no air gap). Alternatively, a design choice can be made to achieve a combination of improved performance and reduced size, depending on the application.
摘要:
A method of fabricating a semiconductor device that includes providing a substrate having at least a first semiconductor layer atop a dielectric layer, wherein the first semiconductor layer has a first thickness of less than 10 nm. The first semiconductor layer is etched with a halide based gas at a temperature of less than 675° C. to a second thickness that is less than the first thickness. A second semiconductor layer is epitaxially formed on an etched surface of the first semiconductor layer. A gate structure is formed directly on the second semiconductor layer. A source region and a drain region is formed on opposing sides of the gate structure.
摘要:
Voltage programmable anti-fuse structures and methods are provided that include at least one conductive material island atop a dielectric surface that is located between two adjacent conductive features. In one embodiment, the anti-fuse structure includes a dielectric material having at least two adjacent conductive features embedded therein. At least one conductive material island is located on an upper surface of the dielectric material that is located between the at least two adjacent conductive features. A dielectric capping layer is located on exposed surfaces of the dielectric material, the at least one conductive material island and the at least two adjacent conductive features. When the anti-fuse structure is in a programmed state, a dielectric breakdown path is present in the dielectric material that is located beneath the at least one conductive material island which conducts electrical current to electrically couple the two adjacent conductive features.
摘要:
A method includes forming one or more trenches in a substrate; lining the one or more trenches with a dielectric liner; filling the one or more trenches with a conductive electrode to form one or more trench electrodes; forming a transistor layer on the substrate; connecting each of the one or more trench electrodes to at least one access transistor in the transistor layer; and thinning the substrate to expose at least a portion of each of the trench electrodes.
摘要:
A FinFET with improved gate planarity and method of fabrication is disclosed. The gate is disposed on a pattern of fins prior to removing any unwanted fins. Lithographic techniques or etching techniques or a combination of both may be used to remove the unwanted fins. All or some of the remaining fins may be merged.
摘要:
A method of fabricating a semiconductor device that includes at least two fin structures, wherein one of the at least two fin structures include epitaxially formed in-situ doped second source and drain regions having a facetted exterior sidewall that are present on the sidewalls of the fin structure. In another embodiment, the disclosure also provides a method of fabricating a finFET that includes forming a recess in a sidewall of a fin structure, and epitaxially forming an extension dopant region in the recess that is formed in the fin structure. Structures formed by the aforementioned methods are also described.