Abstract:
A three-dimensional nonvolatile memory device and a method for fabricating the same include a semiconductor substrate, a plurality of active pillars, a plurality of gate electrodes, and a plurality of supporters. The semiconductor substrate includes a memory cell region and a contact region. The active pillars extend in the memory cell region perpendicularly to the semiconductor substrate. The gate electrodes intersect the active pillars, extend from the memory cell region to the contact region and are stacked on the semiconductor substrate. The supporters extend in the contact region perpendicularly to the semiconductor substrate to penetrate at least one or more of the gate electrodes.
Abstract:
An electronic device is provided. The electronic device includes a housing, a wireless charging coil disposed inside the housing, a fan disposed inside the housing and in proximity to the coil, a temperature sensor disposed inside the housing and in proximity to the coil, a wireless charging circuit having the coil and configured to transmit power wirelessly to an external device via the coil, and a control circuit electrically connected to the fan, the temperature sensor, and the wireless charging circuit. The control circuit may be configured to receive a signal from the external device, receive data related to a temperature of the coil from the temperature sensor, and control the fan at least partially on the basis of at least one of the signal and the data.
Abstract:
A three-dimensional nonvolatile memory device and a method for fabricating the same include a semiconductor substrate, a plurality of active pillars, a plurality of gate electrodes, and a plurality of supporters. The semiconductor substrate includes a memory cell region and a contact region. The active pillars extend in the memory cell region perpendicularly to the semiconductor substrate. The gate electrodes intersect the active pillars, extend from the memory cell region to the contact region and are stacked on the semiconductor substrate. The supporters extend in the contact region perpendicularly to the semiconductor substrate to penetrate at least one or more of the gate electrodes.
Abstract:
A metal air battery system includes an air intake apparatus configured to draw external air, a metal air battery module configured to receive oxygen from the air intake apparatus to perform a discharging reaction, and comprising at least one inlet through configured for oxygen inflow and at least one outlet configured for oxygen outflow, and a flow path connection unit connecting the air intake apparatus to the metal air battery module. A position of the at least one inlet and a position of the at least one outlet is con figured to alternate between a first opening in the metal air battery module and a second opening in the metal air battery module as the metal air battery module is discharged, and the metal air battery system is configured so that at least a portion of the oxygen in the metal air battery module is removed during a charging reaction.
Abstract:
A three-dimensional nonvolatile memory device and a method for fabricating the same include a semiconductor substrate, a plurality of active pillars, a plurality of gate electrodes, and a plurality of supporters. The semiconductor substrate includes a memory cell region and a contact region. The active pillars extend in the memory cell region perpendicularly to the semiconductor substrate. The gate electrodes intersect the active pillars, extend from the memory cell region to the contact region and are stacked on the semiconductor substrate. The supporters extend in the contact region perpendicularly to the semiconductor substrate to penetrate at least one or more of the gate electrodes.
Abstract:
Provided is a method for detecting impurities in ammonium hydroxide. The method for detecting impurities in ammonium hydroxide includes preparing a potassium permanganate solution, preparing ammonium hydroxide, and adding the potassium permanganate solution several times to the ammonium hydroxide so as to detect impurities in the ammonium hydroxide. Potassium permanganate contained in the potassium permanganate solution is added for each time in the range of 0.0001 mol to 0.01 mol per 1 g of ammonia contained in the ammonium hydroxide.
Abstract:
A nonvolatile memory device includes a substrate and a plurality of cell strings provided on the substrate, each cell string including a plurality of memory cells stacked in a direction perpendicular to the substrate. The methods may include applying a word line erase voltage to word lines connected to memory cells of the cell strings; floating ground selection lines connected to ground selection transistors of the cell strings and string selection lines connected to string selection transistors of the plurality of cell strings; applying a ground voltage to at least one lower dummy word line connected to at least one lower dummy memory cell between memory cells and a ground selection transistor in each of the plurality of cell strings; applying an erase voltage to the substrate; and floating the at least one lower dummy word line after applying of the erase voltage.
Abstract:
Disclosed is a nonvolatile memory having a memory cell array including a plurality of cell strings, each cell string including memory cells stacked in a direction perpendicular to a substrate, a ground selection transistor between the memory cells and the substrate, and a string selection transistor between the memory cells and a bit line. The memory also includes an address decoder connected to the memory cells, the string selection transistors, and the ground selection transistors, and configured to apply a ground voltage to the string selection lines, word lines, and ground selection line. Further, the memory includes a read/write circuit connected to the string selection transistors through bit lines, and at least one first memory cell maintains a threshold voltage higher than a threshold voltage distribution corresponding to an erase state.
Abstract:
Provided are three-dimensional nonvolatile memory devices and methods of fabricating the same. The memory devices include semiconductor pillars penetrating interlayer insulating layers and conductive layers alternately stacked on a substrate and electrically connected to the substrate and floating gates selectively interposed between the semiconductor pillars and the conductive layers. The floating gates are formed in recesses in the conductive layers.
Abstract:
An electrolyte for a lithium air battery and lithium air battery including the electrolyte are provided. The electrolyte includes a compound represented by Formula 1 and a lithium salt: