Abstract:
A semiconductor package is provided. The semiconductor package includes a semiconductor chip having opposite first and second surfaces; an RDL structure formed on the first surface of the semiconductor chip and having opposite third and fourth surfaces and a plurality of first conductive through holes penetrating the third and fourth surfaces thereof, wherein the RDL structure is formed on the semiconductor chip through the fourth surface thereof and electrically connected to the semiconductor chip through a plurality of first conductive elements, and the third surface of the RDL structure has a redistribution layer formed thereon; a plurality of conductive bumps formed on the redistribution layer; and an encapsulant formed on the first surface of the semiconductor chip for encapsulating the RDL structure, wherein the conductive bumps are embedded in and exposed from the encapsulant. The invention effectively prevents warpage of the semiconductor package and improves the electrical connection significantly.
Abstract:
A fabrication method of a semiconductor package is disclosed, which includes the steps of: providing a carrier; disposing at least a semiconductor element on the carrier; forming an encapsulant on the carrier and the semiconductor element for encapsulating the semiconductor element; removing the carrier; disposing a pressure member on the encapsulant; and forming an RDL structure on the semiconductor element and the encapsulant, thereby suppressing internal stresses through the pressure member so as to mitigate warpage on edges of the encapsulant.
Abstract:
A method of fabricating a semiconductor package is provided, including providing an interposer having a plurality of conductive elements, disposing the interposer on a carrier having a plurality of recessed portions for the conductive elements to be received therein such that the interposer is coupled to the carrier, attaching the semiconductor element to the interposer, and removing the carrier. Coupling the interposer to the carrier prevents the conductive elements from displacement under pressure. Therefore, the conductive elements will not be in poor or no electrical contact with the interposer.
Abstract:
A fabrication method of a semiconductor package is provided, which includes the steps of: cutting a substrate into a plurality of interposers; disposing the interposers on a carrier, wherein the interposers are spaced from one another by a distance; disposing at least a semiconductor element on each of the interposers; forming an encapsulant to encapsulate the interposers and the semiconductor elements; and removing the carrier. Therefore, by cutting the substrate first, good interposers can be selected and rearranged such that finished packages can be prevented from being wasted due to inferior interposers.
Abstract:
A method of fabricating a semiconductor package is provided, including: cutting a substrate into a plurality of interposers; disposing the interposers in a plurality of openings of a carrier, wherein the openings are spaced from one another by a distance; forming a first encapsulant to encapsulate the interposers; removing the carrier; and disposing at least a semiconductor element on each of the interposers. By cutting the substrate first, good interposers can be selected and rearranged such that finished packages can be prevented from being wasted due to inferior interposers.
Abstract:
A conductive bump structure used to be formed on a substrate having a plurality of bonding pads. The conductive bump structure includes a first metal layer formed on the bonding pads, a second metal layer formed on the first metal layer, and a third metal layer formed on the second metal layer. The second metal layer has a second melting point higher than a third melting point of the third metal layer. Therefore, a thermal compression bonding process is allowed to be performed to the third metal layer first so as to bond the substrate to another substrate, and then a reflow process can be performed to melt the second metal layer and the third metal layer into each other so as to form an alloy portion, thus avoiding cracking of the substrate.
Abstract:
A semiconductor package includes: a chip having an active surface with a plurality of electrode pads and an inactive surface opposite to the active surface; an encapsulant encapsulating the chip and having opposite first and second surfaces, the first surface being flush with the active surface of the chip; and first and second metal layers formed on the second surface of the encapsulant, thereby providing a rigid support to the overall structure to prevent warpage and facilitating heat dissipation of the overall structure.