Abstract:
A film deposition apparatus includes a process chamber, and a turntable disposed in the process chamber and configured to receive a substrate along a circumferential direction. At least one ozone gas supply part configured to supply ozone gas on the turntable is provided. A plate member is disposed to cover the ozone gas supply part. An ozone gas activator is disposed on or above an upper surface of the plate member and configured to activate the ozone gas.
Abstract:
A deposition method includes: forming an adsorption inhibiting region on an adsorption site formed on a substrate, by causing the adsorption site to adsorb adsorption inhibiting radicals by a predetermined amount; causing an area on the adsorption site, on which the adsorption inhibiting region is not formed, to adsorb a raw material gas; and depositing a film of a reaction product on the adsorption site by causing the raw material gas adsorbed on the adsorption site to react with a reactant gas activated by a plasma.
Abstract:
A film formation time setting method to be implemented when forming silicon-containing films on a plurality of substrates arranged on a rotary table includes a film thickness measuring step of performing a provisional film forming process for a provisional film formation time T×N, provisionally set up based on a cycle time T and a number of cycles N, measuring film thicknesses dN-1 of the silicon-containing films formed on the substrates at an end time of the (N-1)th cycle, measuring film thicknesses dN-1˜N of the silicon-containing films at an intermediate time between the (N-1)th cycle and the Nth cycle, and measuring film thicknesses dN of the silicon-containing films at an end time of the Nth cycle; and a film formation time specifying step of comparing the inter-plane uniformities of the silicon-containing films at the respective times to specify and set a film formation time for achieving an optimal inter-plane uniformity.
Abstract:
A film formation apparatus includes a rotary table provided in a processing container; a mounting table mounting a substrate and revolved by rotation of the rotary table; a film formation gas supply part configured to supply a film formation gas to a region through which the mounting table passes by the rotation of the rotary table; a spinning shaft rotatably provided on a portion rotating together with the rotary table; a driven gear provided on the spinning shaft; a driving gear configured to rotate while facing a revolution orbit of the driven gear and provided along an entire circumference of the revolution orbit so as to constitute a magnetic gear mechanism with the driven gear, and a relative-distance-changing mechanism configured to change a relative distance between the revolution orbit of the driven gear and the driving gear.
Abstract:
A film forming apparatus includes a rotary table having a loading area at a first surface side thereof and revolving a substrate loaded on the loading area, a rotation mechanism rotating the loading area such that the substrate rotates around its axis, a processing gas supply mechanism supplying a processing gas to a processing gas supply area so that a thin film is formed on the substrate which repeatedly passes through the processing gas supply area the revolution of the substrate, and a control part configured to perform a calculation of a rotation speed of the substrate based on a parameter including a rotation speed of the rotary table to allow an orientation of the substrate to be changed whenever the substrate is positioned in the processing gas supply area, and to output a control signal for rotating the substrate at a calculated rotation speed.
Abstract:
A film deposition method is provided for filling a recessed pattern formed in a surface of a substrate with a film. In the method, an adsorption blocking group is formed by adsorbing chlorine gas activated by plasma on a top surface of the substrate and an upper portion of the recessed pattern. A source gas that contains one of silicon and a metal, and chlorine, is adsorbed on a lower portion of the recessed pattern where the adsorption blocking group is not formed, by supplying the source gas to the surface of the substrate including the recessed pattern. A molecular layer of a nitride film produced by a reaction of the source gas and a nitriding gas is deposited on the lower portion of the trench by supplying the nitriding gas to the surface of the substrate including the recessed pattern.
Abstract:
A film deposition method includes steps of: placing a substrate in a substrate receiving area of a susceptor provided in a vacuum chamber; evacuating the vacuum chamber; alternately supplying plural kinds of reaction gases to the substrate in the substrate receiving area from corresponding reaction gas supplying parts thereby to form a thin film on the substrate; supplying plasma including a chemical component that reacts with second reaction gas adsorbed on the substrate from a plasma generation part to the substrate when the thin film is being formed, thereby to alter the thin film on the substrate; and changing plasma intensity of the plasma supplied to the substrate, at a predetermined point of time to a different plasma intensity of the plasma that is generated and supplied to the substrate by the plasma generation part before the predetermined point of time.
Abstract:
There is provided a substrate processing apparatus for processing a substrate by supplying a processing gas to the substrate while revolving the substrate, the substrate processing apparatus including: a rotary table installed within a processing container; a rotating mechanism configured to rotate the rotary table; a support part installed in a rotary shaft of the rotary table below the rotary table; an opening portion formed in the rotary table to correspond to amounting position where the substrate is mounted; a mounting part rotatably supported by the support part through the opening portion, and configured to mount the substrate thereon such that a height level of an upper surface of the substrate coincides with a height level of an upper surface of the rotary table; and a rotating mechanism configured to rotate the mounting part.
Abstract:
A film-forming processing apparatus includes a first heater heating an entire heat treatment region of a substrate, a second heater heating the substrate to have an in-plane temperature distribution having a concentric shape, a gas supplier supplying a process gas to a rotary table; and a control part outputting a control signal for executing a first step of setting a rotation position of the rotary table such that the substrate on the rotary table is placed in a position corresponding to the second heater and forming the in-plane temperature distribution having the concentric shape on the substrate by heating the substrate by the second heater, and a second step of performing a film forming process on the substrate by rotating the rotary table in a state where a heating energy received by the substrate from the second heater is smaller than that in the first step.
Abstract:
An operation method of a plasma processing device, includes performing a plasma process on a workpiece by supplying first high frequency power of a predetermined output to an electrode and generating plasma; and performing a charge storage process before the plasma process when a time interval from an end of a previous operation of the plasma processing device exceeds a predetermined interval, the charge storage process including supplying, to the electrode, second high frequency power of a lower output than the predetermined output.