Abstract:
A urethane based polymer composition is provided that exhibits superior shielding properties during and after exposure to high level radiation. The composite is formed by mixing a liquid isocyanate monomer, preferably 4,4′-diisocyanate monomer with a liquid phenolic resin, preferably phenol formaldehyde resin, and a phosphate ester flame retardant. An optional pyridine catalyst may be added to shorten the cure time. The resulting composition cures at room temperature and can be utilized in several manners, including spraying or pouring the composition prior to curing over radioactive material to prevent leakage of radiation. The uncured composite can be sprayed on the walls of a room or container to prevent leakage of radiation and can also be used to contain radiation prior to demolition. The uncured composite can also be molded into bricks or panels for use in construction. In a preferred embodiment, the polymer composition further incorporates radioactive waste, namely depleted uranium oxide, and can be used in conjunction with specially designed containers for storing radioactive material. The resulting polymer/waste composition cures at room temperature and does not deteriorate or suffer structural damage when exposed to higher levels of gamma radiation, nor do the mechanical or chemical properties undergo any detectable change. The composition is resistant to biodegradation and combustion, and does not creep or shrink during thermal cycling.
Abstract:
A multi-step process is provided in which waste material is processed in two or more steps. Specifically, an earlier step of the process heats the waste material at a first temperature. This results in a release of vapors for materials having a boiling point that is lower than the first temperature. A subsequent step of the process heats some or all of the remaining waste material at a second temperature, which is preferably higher than the first temperature. The subsequent heating results in a release of additional vapors for those materials having a boiling point that is lower than the second temperature. A system configured to carry out the process is also disclosed.
Abstract:
A urethane based polymer composition is provided that exhibits superior shielding properties during and after exposure to high level radiation. The composite is formed by mixing a liquid isocyanate monomer, preferably 4,4′-diisocyanate monomer with a liquid phenolic resin, preferably phenol formaldehyde resin, and a phosphate ester flame retardant. An optional pyridine catalyst may be added to shorten the cure time. The resulting composition cures at room temperature and can be utilized in several manners, including spraying or pouring the composition prior to curing over radioactive material to prevent leakage of radiation. The uncured composite can be sprayed on the walls of a room or container to prevent leakage of radiation and can also be used to contain radiation prior to demolition. The uncured composite can also be molded into bricks or panels for use in construction. In a preferred embodiment, the polymer composition further incorporates radioactive waste, namely depleted uranium oxide, and can be used in conjunction with specially designed containers for storing radioactive material. The resulting polymer/waste composition cures at room temperature and does not deteriorate or suffer structural damage when exposed to higher levels of gamma radiation, nor do the mechanical or chemical properties undergo any detectable change. The composition is resistant to biodegradation and combustion, and does not creep or shrink during thermal cycling.
Abstract:
A urethane based polymer composition is provided that exhibits superior shielding properties during and after exposure to high level radiation. The composite is formed by mixing a liquid isocyanate monomer, preferably 4,4′-diisocyanate monomer with a liquid phenolic resin, preferably phenol formaldehyde resin, and a phosphate ester flame retardant. An optional pyridine catalyst may be added to shorten the cure time. The resulting composition cures at room temperature and can be utilized in several manners, including spraying or pouring the composition prior to curing over radioactive material to prevent leakage of radiation. The uncured composite can be sprayed on the walls of a room or container to prevent leakage of radiation and can also be used to contain radiation prior to demolition. The uncured composite can also be molded into bricks or panels for use in construction. In a preferred embodiment, the polymer composition further incorporates radioactive waste, namely depleted uranium oxide, and can be used in conjunction with specially designed containers for storing radioactive material. The resulting polymer/waste composition cures at room temperature and does not deteriorate or suffer structural damage when exposed to higher levels of gamma radiation, nor do the mechanical or chemical properties undergo any detectable change. The composition is resistant to biodegradation and combustion, and does not creep or shrink during thermal cycling.
Abstract:
The system includes a source of solid, liquid or sludge waste and a source of waste gas. A waste conversion device receives the solid, liquid or sludge waste and converts it into a hydrogen-rich gas. An internal combustion engine receives as fuel the hydrogen-rich gas and the waste gas and burns them to produce mechanical work. A generator is operatively connected to the internal combustion engine to generate electricity. Some of the generated electricity may be used to power the waste conversion device. The system allows for high-efficiency, lean-burn operation while reducing the amount of waste converted to hydrogen-rich gas.
Abstract:
A method for pyrolysis, characterized in that a material to be treated is heated to a temperature lower than the decomposition temperature of dioxins and the resulting gaseous components are cooled and liquefied; and an apparatus for practicing the method comprising a heating means (1) and a cooling and liquefying means (2) for the gaseous components formed by the above heating. The method can be employed for pyrolyzing a material to be treated with safety and at a lower cost as compared to a conventional method for pyrolysis.
Abstract:
Presented is a method and apparatus for converting both organic and inorganic materials into more desirable products by the expedient of breaking down these materials into their stable molecular constituents and reforming them into more desirable substances. The process involves the use of two chambers. Blended solid and fluid wastes are augered into the first chamber and agitated, preferably by rotating the chamber so that the waste tumbles over internal fins, while a heat gradient is applied. Carbon and inorganic solid wastes are removed from the system and fluid wastes passed to a second chamber where they are again subjected to a heat gradient. Effluents are recovered and condensed. Electromagnetic radiation, preferably from microwaves, and/or lasers, masers or ultrasonic energy is applied to the wastes in both chambers. Liberal use of catalysts is made in the chambers. In addition, the augering system is based on the use of two, counter-rotating, inter-lapped, symmetric augers for positive feed of materials.
Abstract:
A power plant includes a gas turbine unit having a compressor for compressing ambient air, a burner for burning fuel and heating air compressed by said compressor, and a turbine for expanding air heated by said burner to drive said compressor and produce hot exhaust gases. The plant further includes a combustor for containing particles of solid fuel which are fluidized by the exhaust gases from the turbine to produce hot products of combustion that include coarse ash particulate. Apparatus is provided for generating power from the hot products of combustion.
Abstract:
Methods and apparatus for high efficiency generation of electricity and low oxides of nitrogen (NO.sub.x) emissions are provided. The electricity is generated from combustion of hydrogen-rich gases produced in waste conversion units using ultra lean fuel to air ratios in the range of 0.4-0.7 relative to stoichiometric operation in internal combustion engine-generators or ultra lean operation in gas turbines to ensure minimal production of pollutants such as NO.sub.x. The ultra lean operation also increases the efficiency of the internal combustion engine. High compression ratios (r=12 to 15) can also be employed to further increase the efficiency of the internal combustion engine. Supplemental fuel, such as natural gas or diesel oil, may be added directly to the internal combustion engine-generator or gas turbine for combustion with the hydrogen-rich gases produced in waste conversion unit. In addition, supplemental fuel may be reformed into a hydrogen-rich gas in a plasma fuel converter and then introduced into the internal combustion engine-generator or a gas turbine for combustion along with supplemental fuel and the hydrogen-rich gases produced in waste conversion unit. The preferred embodiment of the waste conversion unit is a fully integrated tunable arc plasma-joule heated melter with a common molten pool and power supply circuits which can be operated simultaneously without detrimental interaction with one another. In this embodiment, the joule heated melter is capable of maintaining the material in a molten state with sufficient electrical conductivity to allow rapid restart of a transferred arc plasma.
Abstract:
Methods and apparatus for treating waste are provided. Waste is converted in an arc plasma-joule heated melter system utilizing one or more arc plasma electrodes and a plurality of joule heating electrodes. The arc plasma electrode(s) can be configured for operation utilizing AC or DC power, or for switching between AC and DC power. The arc plasma electrodes can also be configured for independent arc voltage and arc current control. The joule heating circuits are configured for simultaneous operation with the arcing electrodes, but without detrimental interaction with the arcing electrodes. The systems provide stable, non-leachable products and a gaseous fuel. The gaseous fuel can be utilized in a combustion or non-combustion process to generate electricity.