摘要:
Systems and methods of monitoring a discharge in a plasma process are disclosed. The methods include supplying the plasma process with a periodic power supply signal, determining a first signal waveform in a first time interval within a first period of the power supply signal, determining a second signal waveform in a second time interval within a second period of the power supply signal, the second time interval being at a position within the second period corresponding to a position of the first time interval within the first period, comparing the second signal waveform with a reference signal waveform to obtain a first comparison result, determining that the first comparison result corresponds to a given first comparison result, and in response, time-shifting one of the second signal waveform and the reference signal waveform, and comparing the time-shifted signal waveform with the non-time-shifted signal waveform to obtain a second comparison result.
摘要:
In a heat-flux measuring method for measuring an ion flux of plasma generated in a substrate processing chamber using a heat flux, a heat-flux measuring member is exposed to the plasma and irradiated with a low coherent light. The heat-flux measuring member has a three-layered structure in which a first length and a second length of optical paths of the low-coherent light in the first layer and the third layer are measured using optical interference of reflected lights from the heat-flux measuring member. Current temperatures of the first layer and the third layer are obtained based on the measured first length, the measured second length, and data representing thermal-optical path length relationship. A heat flux flowing through the heat-flux measuring member is calculated based on the obtained temperatures, and a thickness and a thermal conductivity of the second layer.
摘要:
Methods are disclosed for depositing material onto and/or etching material from a substrate in a surface processing tool having a processing chamber, a controller and one or more devices for adjusting the process parameters within the chamber. The method comprises: the controller instructing the one or more devices according to a series of control steps, each control step specifying a defined set of process parameters that the one or more devices are instructed to implement, wherein at least one of the control steps comprises the controller instructing the one or more devices to implement a defined set of constant process parameters for the duration of the step, including at least a chamber pressure and gas flow rate through the chamber, which duration is less than the corresponding gas residence time (Tgr) of the processing chamber for the step.
摘要:
An arrangement for controlling a plasma processing system is provided. The arrangement includes an RF sensing mechanism for obtaining an RF voltage signal. The arrangement also includes a voltage probe coupled to the RF sensing mechanism to facilitate acquisition of the signal while reducing perturbation of RF power driving a plasma in the plasma processing system. The arrangement further includes a signal processing arrangement configured for receiving the signal, split the voltage signals into a plurality of channels, convert the signals into a plurality of direct current (DC) signals, convert the DC signals into digital signals and process the digital signal in a digital domain to generate a transfer function output. The arrangement moreover includes an ESC power supply subsystem configured to receive the transfer function output as a feedback signal to control the plasma processing system.
摘要:
Apparatus for chemically etching a workpiece includes a chamber for receiving a process gas and having a pumping port for extracting exhaust gases, and a workpiece support located in the chamber upstream of the pumping port. The chamber further includes a sub-chamber located upstream of the pumping port and downstream of the workpiece support, and the sub-chamber includes a window and an excitation source, adjacent the window, for creating a plasma in a sample of the exhaust gases to create an optical emission which can be monitored through the window.
摘要:
A plasma processing apparatus for processing semiconductor substrates comprises a plasma processing chamber in which a semiconductor substrate is processed. A process gas source is in fluid communication with the plasma processing chamber and is adapted to supply a process gas into the plasma processing chamber. A RF energy source is adapted to energize the process gas into a plasma state in the plasma processing chamber. Process gas and byproducts of the plasma processing are exhausted from the plasma processing chamber through a vacuum port. At least one component of the plasma processing apparatus comprises a laterally extending optical fiber beneath a plasma exposed surface of the component wherein spatial temperature measurements of the surface are desired to be taken, and a temperature monitoring arrangement coupled to the optical fiber so as to monitor temperatures at different locations along the optical fiber.
摘要:
Plasma processing of plural substrates is performed in a plasma processing apparatus, which is provided with a plasma processing chamber having an antenna electrode and a lower electrode for placing and retaining the plural substrates in turn within the plasma processing chamber, a gas feeder for feeding processing gas into the processing chamber, a vacuum pump for discharging gas from the processing chamber via a vacuum valve, and a solenoid coil for forming a magnetic field within the processing chamber. At least one of the plural substrates is placed on the lower electrode, and the processing gas is fed into the processing chamber. RF power is fed to the antenna electrode via a matching network to produce a plasma within the processing chamber in which a magnetic field has been formed by the solenoid coil. This placing of at least one substrate and this feeding of the processing gas are then repeated until the plasma processing of all of the plural substrates is completed. An end of seasoning is determined when a parameter including an internal pressure of the processing chamber has become stable to a steady value with plasma processing time.
摘要:
Systems and methods for plasma processing of microfeature workpieces are disclosed herein. In one embodiment, a method includes generating a plasma in a chamber while a microfeature workpiece is positioned in the chamber, measuring optical emissions from the plasma, and determining a parameter of the plasma based on the measured optical emissions. The parameter can be an ion density or another parameter of the plasma.
摘要:
A plasma processing chamber is provided comprising one or more process gas inlets, one or more exhaust gas outlets, plasma generating hardware configured to generate a process gas plasma in a plasma processing portion of the plasma processing chamber, a wafer processing stage positioned in the plasma processing chamber, and a plasma monitoring probe assembly. The plasma monitoring probe assembly comprises an electrically conductive probe and an insulator sleeve assembly positioned about the electrically conductive probe. The insulator sleeve assembly comprises a plasma-side sleeve portion and a subterranean sleeve portion positioned about distinct portions of a longitudinal probe axis of the electrically conductive probe of the probe assembly. The plasma-side sleeve portion of the insulator sleeve assembly is constructed of material that is more resistant to plasma-based degradation than is the material of the subterranean sleeve portion of the insulator sleeve assembly, while the subterranean sleeve portion of the insulator sleeve assembly is constructed of material that is more electrically resistant than the material of the plasma-side sleeve portion of the insulator sleeve assembly.
摘要:
A rapid alternating process system and method of operating a rapid alternating process system includes a rapid alternating process chamber, a plurality of process gas sources coupled to the rapid alternating process chamber, wherein each one of the plurality of process gas sources includes a corresponding process gas source flow controller, a bias signal source coupled to the rapid alternating process chamber, a process gas detector coupled to the rapid alternating process chamber, a rapid alternating process chamber controller coupled to the rapid alternating process chamber, the bias signal source, the process gas detector and the plurality of process gas sources, the rapid alternating process chamber controller including logic for initiating a first rapid alternating process phase including: logic for inputting a first process gas into a rapid alternating process chamber, logic for detecting the first process gas in the rapid alternating process chamber, and logic for applying a corresponding first phase bias signal to the rapid alternating process chamber after the first process gas is detected in the rapid alternating process chamber.