Abstract:
A method of forming an image sensor device where the method includes forming a first dielectric layer on a substrate. The method further includes patterning the first dielectric layer to define an area for a reflective shield, where the area defined for the reflective shield is above a photodiode. Additionally, the method includes forming the reflective shield on the substrate by filling the defined area with a high reflectivity material, and the high reflective material comprises a polymer.
Abstract:
A portion on the light exit end surface side of a fiber optic plate includes a first portion and a second portion. The first portion corresponds to a peripheral portion of a semiconductor photodetecting element. The second portion corresponds to a thin portion of the semiconductor photodetecting element and projects more toward the semiconductor photodetecting element than the first portion. A height of a step made between the first portion and the second portion of the fiber optic plate is lower than a height of a step made between the thin portion and the peripheral portion of the semiconductor photodetecting element. The semiconductor photodetecting element and the fiber optic plate are fixed by a resin, in a state in which the first portion and the peripheral portion are in contact and in which the second portion and the thin portion are separated.
Abstract:
Systems for enhancing the sensitivity of detecting an optical signal using nonlinear optics and method of performing the same. In one embodiment, a single-photon detection system includes an optical amplifier realized in a waveguide, and a photodetector coupled to an output of the optical amplifier. A light detection and ranging system includes the optical amplifier coupled to an optical source and one photodetector. In another embodiment, a photodetection system includes a plurality of optical frequency converters, coupled to an optical source, that sequentially convert a wavelength of photons of the optical source to a final wavelength, and a single-photon photodetector coupled to the optical frequency converters to detect single photons produced by the optical source. In another embodiment, an optical sensor includes an optical pump, and a transducer including an optical ring cavity coupled to the optical pump and configured to utilize optical four-wave mixing to detect an external stimulus.
Abstract:
An image sensor package includes an image sensor, a window, and a molding, where the molding includes a lens holder extension portion extending upwards from the window. The lens holder extension portion includes a female threaded aperture extending from the window such that the window is exposed through the aperture. A lens is supported in a threaded lens support. The threaded lens support is threaded into the aperture of the lens holder extension portion. The lens is readily adjusted relative to the image sensor by rotating the lens support.
Abstract:
A method for forming a photo diode is provided. The method includes: forming a first bottom electrode corresponding to a first pixel and a second bottom electrode corresponding to a second pixel over a substrate; forming a dielectric layer over the substrate; patterning the dielectric layer over the substrate; forming a photo conversion layer over the substrate; and forming a top electrode over the photo conversion layer; forming a color filter layer over the top electrode, wherein at least a portion of the dielectric layer separates a first portion of the color filter layer corresponding to a first pixel from a second portion of the color filer layer corresponding to a second pixel, and a refractive index of the dielectric layer is lower than a refractive index of the color filter layer.
Abstract:
An optical communication module includes an optical semiconductor element. The element includes an optical functional region having a light receiving function or a light emitting function, a first transmission layer transmissive to light emitted from the optical functional region or light received by the optical functional region, and a wiring layer stacked on the first transmission layer and constituting a conduction path to the optical functional region. The communication module also includes a second transmission layer transmissive to the light and disposed to cover the optical semiconductor element, and a first resin member stacked on the second transmission layer. The communication module is formed with a fixing hole for fixing an optical fiber. The fixing hole includes a bottom face provided by the second transmission layer, and an opening formed in an outer surface of the first resin member.
Abstract:
A method for manufacturing a spectroscopic sensor 1 comprises a first step of forming a cavity layer 21 by etching a surface layer disposed on a handle substrate, a second step of forming a first mirror layer 22 on the cavity layer 21 after the first step, a third step of joining a light-transmitting substrate 3 onto the first mirror layer 22 after the second step, a fourth step of removing the handle substrate from the cavity layer 21 after the third step, a fifth step of forming a second mirror layer 23 on the cavity layer 21 devoid of the handle substrate after the fourth step, and a sixth step of joining a light-detecting substrate 4 onto the second mirror layer after the fifth step.
Abstract:
Connector systems that carry electrical signals and optical signals in a single connector are provided. A male electro-optical connector can have an electrical insert portion that fits into a receptacle of a female electro-optical connector to provide a structural connection. The optical interface can be advantageously near a front of the connectors for easy maintenance. Optical connectors with a relatively large diameter for the optical interface are also provided. Optical connectors can include a collector for receiving optical signals at a large opening and providing signals to a photodiode at a small opening of the collector. Such optical connectors with a large diameter for an optical interface can advantageously provide reduced alignment tolerances. Adapters, cable adapters, docking stations, and other apparatus can also be provided.
Abstract:
Spacer resin pattern layer which precisely aligns a light-emitting element or a light-receiving element relative to both a waveguide pattern layer and electrical circuit pattern layer from the semiconductor wafer level. A substratum of resin having a through-hole provided for electrical communication with an electrical circuit pattern layer is formed on a semiconductor wafer. A truncated cone-shaped three-dimensional reflective surface is formed to guide the emitted light towards or received light from a waveguide pattern layer. A metal film is deposited planarly in a predetermined range from the center when positioned relative to the position of the through-hole. A truncated cone-shaped mold is stamped in the center. By modifying the direction of the light using this tapered structure, the precision tolerance is increased and optical loss is reduced.
Abstract:
Forming a back-illuminated type CMOS image sensor, includes process for formation of a registration mark on the wiring side of a silicon substrate during formation of an active region or a gate electrode. A silicide film using an active region may also be used for the registration mark. Thereafter, the registration mark is read from the back side by use of red light or near infrared rays, and registration of the stepper is accomplished. It is also possible to form a registration mark in a silicon oxide film on the back side (illuminated side) in registry with the registration mark on the wiring side, and to achieve the desired registration by use of the registration mark thus formed.