Abstract:
The present disclosure provides systems and methods for identifying failures in an analog to digital (A/D) converter. An intelligent electronic device (IED) may monitor a digital output of one or more A/D converters. The IED may determine a slope value limit associated with the A/D converter. The IED may determine an output slope value of the digital output based on a difference of a converter output value measured at a first time and a converter output value measured at a later time. If the determined output slope value exceeds the slope value limit, the IED may identify a failure of the A/D converter. An IED may determine that concurrent failures in multiple, parallel A/D converters are indicative of a problem upstream from the A/D converters.
Abstract:
This invention discloses a method and a circuit for testing a successive approximation ADC. The test method includes the following steps: receiving a plurality of digital output codes of a SAR ADC; counting the number of odd numbers and the number of even numbers of the digital output codes; and determining whether an error occurs in the SAR ADC based on the number of odd numbers and the number of even numbers.
Abstract:
A method for use in testing an analog-to-digital converter. The method includes providing a set of bins, varying a voltage, taking samples of the voltage, providing a selection flag, associating each sample with one bin of the set of bins, and observing a number of samples associated with the bins. An apparatus includes an analog-to-digital converter configured to convert a voltage at an input node to a digital representation provided at an output node. The input node is configured to be coupled to a voltage generator. A sample select unit is configured to determine if a voltage at the input node at least equals a first threshold level and does not exceed a second threshold level. The apparatus is configured, based on the determining, to selectively associate the digital representation with a bin of a set of bins.
Abstract:
The present disclosure provides systems and methods for identifying changes in and failures of a reference voltage of an analog to digital (A/D) converter. A non-scalar function of the reference voltage of the A/D converter can be determined and output to the A/D converter. The A/D converter is configured to output a digital value to the A/D conversion system, wherein the digital value corresponds to the non-scalar function of the reference voltage. The A/D conversion system decodes the non-scalar function of the reference voltage with a corresponding inverse function, and may determine the drift factor associated with the reference voltage. The A/D conversion system can report a change in, or a failure of, the A/D converter or its reference voltage, and can operate or prevent operation of protection elements.
Abstract translation:本公开提供用于识别模数(A / D)转换器的参考电压的变化和失败的系统和方法。 可以确定A / D转换器的参考电压的非标量函数并将其输出到A / D转换器。 A / D转换器被配置为向A / D转换系统输出数字值,其中数字值对应于参考电压的非标量函数。 A / D转换系统用对应的反函数对参考电压的非标量函数进行解码,并且可以确定与参考电压相关的漂移因子。 A / D转换系统可以报告A / D转换器或其参考电压的变化或故障,并可以操作或防止保护元件的工作。
Abstract:
In contrast to some existing techniques, a calibration technique compares multiple outputs which may be, for example, successive or different outputs from the digital-to-analog converter (DAC) in an analog environment and determines differences between at least two outputs in an analog environment. A feedback signal is provided in the digital environment to provide an internal or self-calibration regime. The digital feedback signal is provided to a digital signal processing (DSP) component of the calibration circuitry which uses the feedback signal to determine appropriate input codes to provide to the DAC. The same DAC can be used for both signal generation and feedback DAC purposes, and this provides a self-calibration of the DAC performance which is typically related to the integral non-linearity (INL) characteristics of the DAC transfer function.
Abstract:
Embodiments of a pipeline analog-to-digital converter is provided. In accordance with some embodiments, a pipeline analog-to-digital converter includes a stage, the stage including a residue amplifier that amplifies a residual voltage generated by the stage to obtain an amplified residual voltage; a backend digitizer that digitizes the amplified residual voltage to generate a digitized residual; and a digital correction circuit that corrects the digitized residual according to which zone the digitized residual is found.
Abstract:
A digital-correction-type A/D converter which is a charge sharing type and performing successive approximation is realized in a small area. The A/D converter is configured with an A/D conversion unit which is a charge sharing type and performing successive approximation, a digital correction unit which receives a digital output of the A/D conversion unit and performs digital correction to the digital output, and a holding unit which holds a test signal. A test signal of a common value from the holding unit is inputted into the A/D conversion unit in the first period and the second period. The A/D conversion correction coefficient for the digital correction unit is calculated on the basis of the digital correction result of the digital correction unit in the first period, and the digital correction result of the digital correction unit in the second period.
Abstract:
A digital-correction-type A/D converter which is a charge sharing type and performing successive approximation is realized in a small area. The A/D converter is configured with an A/D conversion unit which is a charge sharing type and performing successive approximation, a digital correction unit which receives a digital output of the A/D conversion unit and performs digital correction to the digital output, and a holding unit which holds a test signal. A test signal of a common value from the holding unit is inputted into the A/D conversion unit in the first period and the second period. The A/D conversion correction coefficient for the digital correction unit is calculated on the basis of the digital correction result of the digital correction unit in the first period, and the digital correction result of the digital correction unit in the second period.
Abstract:
An analog-to-digital conversion circuit includes capacitors coupled to a common line. Each capacitor has a capacitance less than or equal to a capacitance sum of lower order capacitors. Switches selectively supply an analog input signal, a first reference voltage, or a second reference voltage to the capacitors in response to a control signal. A reset switch supplies the common line with a first voltage between the first and second reference voltages. A comparator compares the first voltage with a second voltage at the common line to generate a determination signal. A conversion control circuit generates the control signal and a multiple-bit digital signal based on the determination signal. A measurement control circuit measures the capacitance of the capacitor corresponding to an upper order bit of the digital signal using lower order capacitors. A correction circuit corrects the digital signal based on the measured capacitance to generate a digital output signal.
Abstract:
Embodiments of a pipeline analog-to-digital converter is provided. In accordance with some embodiments, a pipeline analog-to-digital converter includes a stage, the stage including a residue amplifier that amplifies a residual voltage generated by the stage to obtain an amplified residual voltage; a backend digitizer that digitizes the amplified residual voltage to generate a digitized residual; and a digital correction circuit that corrects the digitized residual according to which zone the digitized residual is found.