摘要:
Production of 1,3-butadiene ethanol, that is more than 50% of the total weight of feedstock: A) conversion of feedstock and of ethanol effluent from separation B to a conversion effluent being a majority of 1,3-butadiene, water and ethylene, and to a hydrogen effluent, operating at a pressure between 0.1 and 1.0 MPa, a temperature between 300 and 500° C. in the presence of at least one catalyst; B) separation of conversion effluent originating from A and hydration effluent from C to an ethanol effluent, a butadiene effluent, a water effluent and an ethylene effluent; C) hydration of ethylene fed by ethylene effluent and/or water effluent both from separation B, to produce an ethanol hydration effluent then being recycled to separation B.
摘要:
The invention provides a process for the preparation of an olefinic product, the process comprising the steps of: (a) reacting an oxygenate feedstock, comprising oxygenate, in an oxygenate reaction zone in the presence of a catalyst comprising a molecular sieve, at a temperature in the range of from 350 to 1000° C., to produce a reaction effluent stream, comprising at least oxygenate, olefin, water and acidic by-products; (b) cooling the reaction effluent stream by means of an indirect heat exchange to provide a cooled reaction effluent stream at a temperature greater than the dew point temperature of reaction effluent stream; (c) passing the cooled reaction effluent stream into a quench tower and contacting the cooled reaction effluent stream with a first aqueous liquid in the presence of at least one set of quench tower internals, to produce a quench tower gaseous stream comprising the olefinic product and a quench tower liquid stream comprising condensed material; and (d) separating the quench tower liquid stream into a hydrocarbon quench tower liquid stream and an aqueous quench tower liquid stream in the presence of one or more coalescers.
摘要:
This disclosure is directed to uses for a new crystalline molecular sieve designated SSZ-100. SSZ-100 is synthesized using a cationic nitrogen-containing organic compound having the following structure:
摘要:
A process for converting oxygenates to olefins comprising: a) feeding an oxygenate stream to a reactor; b) contacting the oxygenate stream with a molecular sieve catalyst to form products and coke on the catalyst; c) passing the products and entrained catalyst into a first gas/solid separation device to separate the products from the catalyst; d) removing the products from the first gas/solid separation device; e) passing a portion of the catalyst from the reactor to a regenerator; f) regenerating the catalyst in the regenerator by contacting it with a regeneration medium to combust the coke on the catalyst and form combustion products; and g) passing the combustion products and entrained catalyst into a second gas/solid separation device to separate the combustion products from the catalyst wherein the separation efficiency of the first gas/solid separation device is greater than the separation efficiency of the second gas/solid separation device.
摘要:
Methods, catalysts, and reactor systems for producing in high yield aromatic chemicals and liquid fuels from a mixture of oxygenates comprising di- and polyoxygenates are disclosed. Also disclosed are methods, catalysts, and reactor systems for producing aromatic chemicals and liquid fuels from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like; and methods, catalysts, and reactor systems for producing the mixture of oxygenates from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like. The disclosed catalysts for preparing the mixture of oxygenates comprise a Group VIII metal and a crystalline alumina support.
摘要:
A process for the conversion of oxygenates to olefins is presented. The process utilizes a catalyst having a 2-dimensional morphology, and the catalyst is a pentasil zeolite. The process is an oxygenate to olefins conversion under typical temperatures and pressures, but provides for an increased propylene yield and a reduced ethylene yield.
摘要:
The present invention provides a fluidized bed reactor and its use for producing olefins from oxygenates, the fluidized bed reactor comprises: a reaction zone located in the lower portion of the fluidized bed reactor and comprising a lower dense phase zone and an upper riser, wherein the dense phase zone and the riser are connected with each other transitionally; a separation zone located in the upper portion of the fluidized bed reactor and comprising a settling chamber, a fast gas-solid separation means, a cyclone and a gas collecting chamber, wherein the riser extends upwardly into the separation zone and is connected at its outlet with the inlet of the fast gas-solid separation means, the fast gas-solid separation means is connected at its outlet with the inlet of the cyclone via a fast gas passage, the cyclone is connected at its outlet with the gas collecting chamber, and the gas collecting chamber is located below the reactor outlet and connected therewith; and a catalyst recycle line for recycling the catalyst from the settling chamber back to the dense phase zone, a catalyst withdrawl line for withdrawing the deactivated catalyst from the settling chamber and/or the dense phase zone to the catalyst regeneration means, and a catalyst return line for returning the regenerated catalyst from the catalyst regeneration means to the dense phase zone.
摘要:
A process for converting light paraffins (especially C3-C5) to middle distillate and higher boiling range liquid hydrocarbons by (1) oxygen or air oxidation of iso-paraffins to alkyl hydroperoxides; (2) conversion of alkyl hydroperoxides to dialkyl peroxides; (3) radical coupling of paraffins using the dialkyl peroxides as radical initiators forming heavier hydrocarbon products; and (4) fractionation of the heavy hydrocarbon products. The net reaction is catalytically converting light paraffins to heavier hydrocarbons using oxygen or air to effect the conversion.
摘要:
A process and a plant for producing C2-C4 olefins, in particular propylene, from an educt mixture containing steam as well as methanol vapor and/or dimethyl ether vapor. The educt mixture is reacted in at least one first reactor on a granular, form-selective zeolite catalyst to obtain a reaction mixture including low-molecular olefins and gasoline hydrocarbons, which in a first separating device is separated into a mixture rich in C2-C4 olefins, a mixture rich in C5+ gasoline hydrocarbons, and an aqueous phase, wherein the mixture rich in gasoline hydrocarbons is mixed with an inert medium, the mixture thus obtained is reacted in at least one second reactor on a granular zeolite catalyst to obtain a product mixture including C2-C4 olefins, and this product mixture is recirculated to the first separating device, and wherein the mixture rich in C5+ gasoline hydrocarbons is separated in a second separating device into a product stream containing C5-C6 hydrocarbons and a product stream containing C7+ hydrocarbons, before being supplied to the second reactor, and only the product stream containing C7+ hydrocarbons is supplied to the second reactor, whereas the product stream containing C5-C6 hydrocarbons together with the educt mixture is supplied to the at least one first reactor.
摘要:
Disclosed are an amorphous calcium phosphate catalyst for use in production of 1,3-butadiene and methyl ethyl ketone from 2,3-butanediol, a preparation method thereof and a method of producing 1,3-butadiene and methyl ethyl ketone from 2,3-butanediol using the amorphous calcium phosphate catalyst.