Abstract:
The invention is embodied in an inductively coupled RF plasma reactor including a reactor chamber enclosure defining a plasma reactor chamber and a support for holding a workpiece inside the chamber, a non-planar inductive antenna adjacent the reactor chamber enclosure, the non-planar inductive antenna including inductive elements spatially distributed in a non-planar relative to a plane of the workpiece to compensate for a null in an RF inductive pattern of the antenna, and a plasma source RF power supply coupled to the non-planar inductive antenna. The planar inductive antenna may be symmetrical or non-symmetrical, although it preferably includes a solenoid winding such as a vertical stack of conductive windings. In a preferred embodiment, the windings are at a minimum radial distance from the axis of symmetry while in an alternative embodiment the windings are at a radial distance from the axis of symmetry which is a substantial fraction of a radius of the chamber.
Abstract:
A plasma etch process is described for the etching of oxide with a high selectivity to nitride, including nitride formed on uneven surfaces of a substrate, e.g., on sidewalls of steps on an integrated circuit structure. The addition of one or more hydrogen-containing gases, preferably one or more hydrofluorocarbon gases, to one or more fluorine-substituted hydrocarbon etch gases and a scavenger for fluorine, in a plasma etch process for etching oxide in preference to nitride, results in a high selectivity to nitride which is preserved regardless of the topography of the nitride portions of the substrate surface. In a preferred embodiment, one or more oxygen-bearing gases are also added to reduce the overall rate of polymer deposition on the chamber surfaces and on the surfaces to be etched, which can otherwise reduce the etch rate and cause excessive polymer deposition on the chamber surfaces. The fluorine scavenger is preferably an electrically grounded silicon electrode associated with the plasma.
Abstract:
The invention is embodied in an inductively coupled RF plasma reactor including a reactor chamber enclosure defining a plasma reactor chamber and a support for holding a workpiece inside the chamber, a non-planar inductive antenna adjacent the reactor chamber enclosure, the non-planar inductive antenna including inductive elements spatially distributed in a non-planar manner relative to a plane of the workpiece to compensate for a null in an RF inductive pattern of the antenna, and a plasma source RF power supply coupled to the non-planar inductive antenna. The planar inductive antenna may be symmetrical or non-symmetrical, although it preferably includes a solenoid winding such as a vertical stack of conductive windings. In a preferred embodiment, the windings are at a minimum radial distance from the axis of symmetry while in an alternative embodiment the windings are at a radial distance from the axis of symmetry which is a substantial fraction of a radius of the chamber.
Abstract:
An electrostatic chuck 100 useful for holding a substrate 55 in a high density plasma, comprises a dielectric covered electrode 110 having at least one heat transfer gas flow conduit 150 therein. An electrical isolator 200 comprising dielectric material is positioned in the gas flow conduit 150 to (i) electrically isolate the gas in the conduit from the plasma or electrode 110, and (ii) allow passage of heat transfer gas through the conduit. Preferably, the dielectric material comprises a plasma-deactivating material that has a high surface area that reduces plasma formation of gas passing through the conduit 150 in a plasma process. A semiconducting dielectric member 115 useful for rapidly charging and discharging electrostatic chucks is also described.
Abstract:
An electrostatic chuck including a pedestal having a conductive upper surface; and a layer of plasma-sprayed material formed on the upper surface of the pedestal and defining a surface onto which a substrate is placed during use, wherein the plasma-sprayed material exhibits the Johnson-Rahbeck effect when a bias is applied between the substrate and the pedestal.
Abstract:
A method for protecting a selected area of a substrate against deposition on the selected area. The method includes the steps of flowing a process gas into a substrate processing chamber and flowing a purge gas to the selected area of the substrate to prevent the process gas from contacting the selected area or minimize contact between the process gas and the selected area. In various embodiments the selected area is a backside periphery of the substrate or the edge of the substrate. Also in these embodiments, the process gas is flowed into a deposition zone in order to deposit a thin film layer over an upper surface of the substrate, and a flow of the process and purge gas is established such that the process gas flows radically across the upper surface of the substrate, combines with the purge gas near an edge of the substrate and exits the processing chamber through an exhaust system.
Abstract:
In an apparatus for producing an electromagnetically coupled planar plasma comprising a chamber having a dielectric shield in a wall thereof and a planar coil outside of said chamber and adjacent to said window coupled to a radio frequency source, the improvement whereby a scavenger for fluorine is mounted in or added to said chamber. When a silicon oxide is etched with a plasma of a fluorohydrocarbon gas, the fluorine scavenger reduces the free fluorine radicals, thereby improving the selectivity and anisotropy of etching and improving the etch rate while reducing particle formation.
Abstract:
A substrate processing reactor capable of thermal CVD, plasma-enhanced CVD, plasma-assisted etchback, plasma self-cleaning and other substrate processing operations all of which can either be performed separately or as part of in-situ multiple step processing. The reactor incorporates a uniform radial gas pumping system which enables uniform reactant gas flow across the wafer. Also included are upper and lower purge gas dispersers. The upper purge gas disperser directs purge gas flow downwardly toward the periphery of the wafer while the lower gas disperser directs purge gas across the backside of the wafer. The radial pumping gas system and purge gas dispersers sweep radially away from the wafer to prevent deposition external to the wafer and keep the chamber clean.
Abstract:
A method for plasma processing characterized by the steps of disposing a wafer proximate to a cathode within a process chamber, releasing a gas into the chamber, applying R.F. power in the VHF/UHF frequency range to the cathode to form a plasma within the chamber, developing a magnetic field within the chamber having flux lines substantially perpendicular to the surface of the wafer, and varying the strength of the magnetic field until a desired cathode sheath voltage is attained. The apparatus includes a chamber, a wafer-supporting cathode disposed within the chamber, a mechanism for introducing gas into the chamber, an R.F. power source coupled to the cathode operating in the frequency from about 50-800 megahertz, an electromagnetic coil disposed around the chamber adapted to develop a magnetic field within the chamber which is substantially perpendicular to the wafer and a variable output power supply coupled to the coil to vary the magnetic field strength and therefore the cathode sheath voltage within the chamber.
Abstract:
An improved method of fabricating integrated circuit structures on semiconductor wafers using a plasma-assisted process is disclosed wherein the plasma is generated by a VHF/UHF power source at a frequency ranging from about 50 to about 800 MHz. Low pressure plasma-assisted etching or deposition processes, i.e., processes may be carried out within a pressure range not exceeding about 500 milliTorr; with a ratio of anode to cathode area of from about 2:1 to about 20:1, and an electrode spacing of from about 5 cm. to about 30 cm. High pressure plasma-assisted etching or deposition processes, i.e., processes may be carried out with a pressure ranging from over 500 milliTorr up to 50 Torr or higher; with an anode to cathode electrode spacing of less than about 5 cm. By carrying out plasma-assisted processes using plasma operated within a range of from about 50 to about 800 MHz, the electrode sheath voltages are maintained sufficiently low, so as to avoid damage to structures on the wafer, yet sufficiently high to preferably permit initiation of the processes without the need for supplemental power sources. Operating in this frequency range may also result in reduction or elimination of microloading effects.