摘要:
The present invention provides a micropackaged device comprising: a substrate for securing a device with a corrosion barrier affixed to the substrate, wherein the corrosion barrier comprises a first thin-film layer, a metal film coating the thin-film layer and a second thin-film layer to provide a sandwich layer; and optionally at least one feedthrough disposed in the substrate to permit at least one input and or at least one output line into the micropackaged device, wherein the micropackaged device is encapsulated by the corrosion barrier. Methods of producing the micropackaged device are also disclosed.
摘要:
Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.
摘要:
A medical device having a permeable bag connected by a non-permeable cannula to a discharge sac is described along with a manufacturing process and surgical implantation method. The permeable portions of the device have pores that are sized to be permeable to a predetermined class of small molecules, such as oxygen, nitrous oxide, or other therapeutic agents. Once absorbed inside the device, the small molecules are then passively transported, by a concentration gradient of the small molecules, to the discharge sac to be disbursed. A metal tube or other strip can be included in the cannula to assist a surgeon in orienting the device within the body.
摘要:
Thin parylene C membranes having smooth front sides and ultrathin regions (e.g., 0.01 μm to 5 μm thick) interspersed with thicker regions are disclosed. The back sides of the membranes can be rough compared with the smooth front sides. The membranes can be used in vitro to grow monolayers of cells in a laboratory or in vivo as surgically implantable growth layers, such as to replace the Bruch's membrane in the eye. The application further provides an implantable cage-like apparatus for culturing cells comprising the parylene membrane.
摘要:
An implantable medical device, a method of manufacturing, and a method of use are described. The implantable medical device includes an absorption bag connected by a cannula to a discharge bag. The implantable medical device also includes a reservoir external to the discharge bag and attached to a surface of the discharge bag. At least a portion of the absorption bag and at least a portion of a bottom surface of the reservoir are permeable to a predefined class of small molecules, such as molecular oxygen. The reservoir can retain live cells that rely on the small molecules for survival and growth. Based on concentration of the small molecules, the small molecules permeate into the absorption bag and are transported to the discharge bag for permeation into the reservoir, thereby providing a supply of the small molecules to the live cells.
摘要:
The present invention provides a method for diagnosing cancer, predicting a disease outcome or response to therapy in a patient sample. The method involves isolating a circulating tumor cell (CTC), for example, a viable CTC, from a sample using a parylene microfilter device comprising a membrane filter having or consisting of a parylene substrate, which has an array of holes with a predetermined shape and size; and detecting and quantifying telomerase activity in blood circulating tumor cells. The invention further provides methods of using cells live-captured in various applications.
摘要:
Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.
摘要:
Methods, and devices produced by the methods, for electroplating a multitude of micro-scale electrodes that are electrically isolated from each other on a cable or other device is described. A localized area of connections on another end of the cable is shorted together by depositing a metal sheet or other conductive material over the localized area. The metal sheet is connected to a terminal of a power supply, and the electrode end of the cable is immersed in an electrolyte solution for electrodeposition by electroplating. After the electrodes are electroplated, the metal sheet is removed from the cable in order to re-isolate the electrodes.
摘要:
Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.
摘要:
Thin parylene C membranes having smooth front sides and ultrathin regions (e.g., 0.01 μm to 5 μm thick) interspersed with thicker regions are disclosed. The back sides of the membranes can be rough compared with the smooth front sides. The membranes can be used in vitro to grow monolayers of cells in a laboratory or in vivo as surgically implantable growth layers, such as to replace the Bruch's membrane in the eye. The thin regions of parylene are semipermeable to allow for proteins in serum to pass through, and the thick regions give mechanical support for handling by a surgeon. The smooth front side allows for monolayer cell growth, and the rough back side helps prevents cells from attaching there.