摘要:
A III-V group compound crystal article comprises a substrate having a non-nucleation surface with smaller nucleation density (S.sub.NDS) and a nucleation surface (S.sub.NDL) which is arranged adjacent to said non-nucleation surface (S.sub.NDS), has a sufficiently small area for a crystal to grow only from a single nucleus and a larger nucleation density (ND.sub.L) than the nucleation density (ND.sub.S) of said non-nucleation surface (S.sub.NDS) and is comprised of an amorphous material, and a III-V group compound monocrystal grown from said single nucleus on said substrate and spread on said non-nucleation surface (S.sub.NDS) beyond said nucleation surface (S.sub.NDL).
摘要:
A method for forming a semiconductor thin film comprises crystallizing an amorphous silicon thin film by a first thermal treatment at 700.degree. C. or lower for ten hours or longer and carrying out a second thermal treatment at 1200.degree. C. or higher in which a lamp light is radiated to the crystallized thin film.
摘要:
A method of forming a crystal comprises a crystal forming treatment effected by dipping a substrate having a nonnucleation surface having a small nucleation density and a nucleation surface having a larger nucleation density than said nonnucleation surface and an area sufficiently fine to such an extent as to allow only a single nucleus to be formed in a solution containing a monocrystal forming material to thereby allow a monocrystal to grow from only the single nucleus.
摘要:
A method of producing a semiconductor substrate, comprises the steps of: forming pores in the entire body of a single-crystal silicon substrate by anodization; epitaxially growing a single-crystal silicon layer on a surface of the porous single-crystal silicon substrate; sticking a supporting substrate to the surface of the epitaxial layer of single-crystal silicon by using an adhesive; selectively etching the porous single-crystal silicon substrate; sticking the epitaxial layer fast to a transparent insulating substrate containing SiO.sub.2 as a main constituent; separating the supporting layer from the epitaxial layer by removing the adhesive; and heat-treating the epitaxial layer stuck fast on the transparent insulating layer. Alternatively, a porous layer is formed in a surface portion of a single-crystal silicon substrate, and then, the non-porous portion is removed before the porous layer is selectively etched.
摘要:
A semiconductor memory device has plural first transistors constituting an information memory circuit and plural second transistors constituting gate units for controlling information input and output. The plural first transistors and the plural second transistors are formed in mutually overlaying structure across an insulating layer. A heterogeneous material of a nucleation density sufficiently higher than that of the insulating layer and of a size small enough to grow a single nucleus of a semiconductor material is formed on the insulating layer. The transistors positioned on the insulating layer are formed in a monocrystalline or substantially monocrystalline semiconductor layer grown around the single nucleus formed on the different material.
摘要:
A photovoltaic device comprises a substrate having a plurality of conductive surfaces surrounded by an insulating surface, a plurality of first photovoltaic elements having single-crystal layer regions covering said conductive surfaces, and a second photovoltaic element covering said plurality of first photovoltaic elements.The single-crystal layer regions are separated from each other.
摘要:
A photoelectric conversion device includes a light transmissive substrate having a deposition surface and a bottom surface. The bottom surface receives light and passes it through the substrate. A heterogeneous deposition surface is formed on the substrate deposition surface and has a nucleation density higher than the nucleation density of the substrate deposition surface. The heterogeneous deposition surface also has an area dimensioned to permit growth of a single nucleus of a single crystal material. A photoelectric conversion collector is formed of the single crystal material grown on the heterogeneous deposition surface. The collector receives light passed through the substrate bottom surface. Photoresponsive transistor elements are formed in and on the collector for outputting a signal corresponding to the light received by the collector through the bottom of the light transmissive substrate. Thus, electrical wiring and transistor elements are formed on the top of the collector, away from the collector surface which receives the light.
摘要:
A method of manufacturing a semiconductor device includes the steps of forming a plurality of first integrated circuits on the surface side of a first semiconductor substrate; forming a plurality of second integrated circuits in a semiconductor layer that is formed on a release layer provided on a second semiconductor substrate; bonding the two semiconductor substrates so that electrically bonding portions are bonded to each other to form a bonded structure; separating the second semiconductor substrate from the bonded structure at the release layer to transfer, to the first semiconductor substrate, the semiconductor layer in which the plurality of second integrated circuits are formed; and dicing the first semiconductor substrate to obtain stacked chips each including the first integrated circuit and the second integrated circuit.
摘要:
A method includes arranging a first bonding layer on a first functional region on a first substrate, or a region on a second substrate, bonding the first functional region to the second substrate through the first bonding layer, subjecting a first release layer to a first process to separate the first substrate from the first functional region at the first release layer, arranging a second bonding layer on a second functional region on the first substrate, or a region on a third substrate, bonding the second functional region to the second or third substrate through the second bonding layer, and subjecting a second release layer to a second process to separate the first substrate from the second functional region at the second release layer.
摘要:
Provided is a method for transferring, onto a second substrate, at least one of functional regions arranged and joined to a first separation layer that is disposed on a first substrate and that becomes separable by a treatment, in which regions on the second substrate where the functional regions are to be transferred have a second separation layer that becomes separable by a treatment. The method includes a step of joining the first substrate to the second substrate by bonding such that the functional regions contact the second separation layer; a step of separating the functional regions from the first substrate at the first separation layer; and a step of, before or after the step of separation, forming separation grooves penetrating through the second substrate and the second separation layer from a surface of the second substrate, the surface being opposite to a surface having the second separation layer thereon.