Abstract:
A superjunction bipolar transistor includes an active transistor cell area that includes active transistor cells electrically connected to a first load electrode at a front side of a semiconductor body. A superjunction area overlaps the active transistor cell area and includes a low-resistive region and a reservoir region outside of the low-resistive region. The low-resistive region includes a first superjunction structure with a first vertical extension with respect to a first surface at the front side of the semiconductor body. The reservoir region includes no superjunction structure such that the reservoir region includes the semiconductor body that extends from a region located at the first surface to a drain region.
Abstract:
A semiconductor substrate having a first main surface and a transistor cell includes a drift region, a body region between the drift region and the first main surface, an active trench at the first main surface extending into the drift region, a gate insulating layer at sidewalls and a bottom side of the active trench, a gate conductive layer in the active trench, a source region in the body region, and adjacent to the active trench, a body trench at the first main surface extending into the drift region, the body trench being adjacent to the body region and to the drift region, an insulating layer at sidewalls and at a bottom side of the body trench, the insulating layer being asymmetric with respect to an axis extending perpendicular to the first main surface at a center of the body trench, and a conductive layer in the body trench.
Abstract:
An embodiment of a semiconductor device comprises a transistor cell array in a semiconductor body. The transistor cell array comprises transistor cell units. Each of the transistor cell units comprises a control terminal and first and second load terminals, respectively. The transistor cell units are electrically connected in parallel, and the control terminals of the transistor cells units are electrically connected. A first group of the transistor cell units includes a first threshold voltage. A second group of the transistor cell units includes a second threshold voltage larger than the first threshold voltage. A channel width of a transistor cell unit of the first group is smaller than a channel width of a transistor cell unit of the second group.
Abstract:
A power semiconductor device is disclosed. In one example, the device includes a semiconductor body coupled to a first load terminal structure and a second load terminal structure. An active cell field is implemented in the semiconductor body. The active cell field is surrounded by an edge termination zone. A plurality of first cells and a plurality of second cells are provided in the active cell field. Each first cell includes a first mesa, the first mesa including: a first port region and a first channel region. Each second cell includes a second mesa, the second mesa including a second port region. The active cell field is surrounded by a drainage region that is arranged between the active cell field and the edge termination zone.
Abstract:
A power semiconductor device includes a semiconductor body coupled to first and second load terminal structures, and first and second cells each configured for controlling a load current and electrically connected to the first load terminal structure and to a drift region. A first mesa in the first cell includes a port region electrically connected to the first load terminal structure, and a first channel region coupled to the drift region. A second mesa included in the second cell includes a port region electrically connected to the first load terminal structure, and a second channel region coupled to the drift region. The mesas are spatially confined in a direction perpendicular to a direction of the load current by an insulation structure, and have a total extension of less than 100 nm in that direction. The first channel region includes an inversion channel. The second channel region includes an accumulation channel.
Abstract:
A semiconductor device includes a first transistor cell of a plurality of transistor cells of a vertical field effect transistor arrangement, and a second transistor cell of the plurality of transistor cells. The first transistor cell and the second transistor cell are electrically connected in parallel. A gate of the first transistor cell and a gate of the second transistor cell are controllable by different gate control signals.
Abstract:
A power semiconductor transistor includes a semiconductor body coupled to a load terminal, a drift region, a first trench extending into the semiconductor body and including a control electrode electrically insulated from the semiconductor body by an insulator, a source region arranged laterally adjacent to a sidewall of the first trench and electrically connected to the load terminal, a channel region arranged laterally adjacent to the same trench sidewall as the source region, a second trench extending into the semiconductor body, and a guidance zone electrically connected to the load terminal and extending deeper into the semiconductor body than the first trench. The guidance zone is adjacent the opposite sidewall of the first trench as the source region and adjacent one sidewall of the second trench. In a section arranged deeper than the bottom of the first trench, the guidance zone extends laterally towards the channel region.
Abstract:
A semiconductor device includes a first transistor cell of a plurality of transistor cells of a vertical field effect transistor arrangement, and a second transistor cell of the plurality of transistor cells. The first transistor cell and the second transistor cell are electrically connected in parallel. A gate of the first transistor cell and a gate of the second transistor cell are controllable by different gate control signals.
Abstract:
A semiconductor device comprising a source region being electrically connected to a first load terminal (E) of the semiconductor device and a drift region comprising a first semiconductor material (M1) having a first band gap, the drift region having dopants of a first conductivity type and being configured to carry at least a part of a load current between the first load terminal (E) and a second load terminal (C) of the semiconductor device, is presented. The semiconductor device further comprises a semiconductor body region having dopants of a second conductivity type complementary to the first conductivity type and being electrically connected to the first load terminal (E), a transition between the semiconductor body region and the drift region forming a pn-junction, wherein the pn-junction is configured to block a voltage applied between the first load terminal (E) and the second load terminal (C).The semiconductor body region isolates the source region from the drift region and includes a reduced band gap zone comprising a second semiconductor material (M2) having a second band gap that is smaller than the first band gap, wherein the reduced band gap zone is arranged in the semiconductor body region such that the reduced band gap zone and the source region exhibit, in a cross-section along a vertical direction (Z), at least one of a common lateral extension range (LR) along a first lateral direction (X) and a common vertical extension range (VR) along the vertical direction (Z).
Abstract:
A semiconductor device includes a semiconductor body including a first surface having a normal direction defining a vertical direction, a first n-type semiconductor region arranged below the first surface and having a first maximum doping concentration and a second n-type semiconductor region arranged below the first n-type semiconductor region and including, in a vertical cross-section, two spaced apart first n-type portions each adjoining the first n-type semiconductor region, having a maximum doping concentration which is higher than the first maximum doping concentration and having a first minimum distance to the first surface, and a second n-type portion adjoining the first n-type semiconductor region, having a maximum doping concentration which is higher than the first maximum doping concentration and a second minimum distance to the first surface which is larger than the first minimum distance. A p-type second semiconductor layer forms a pn-junction with the second n-type portion.