Abstract:
A CMOS image sensor array and method of fabrication. The CMOS imager sensor array comprises a substrate; an array of light receiving pixel structures formed above the substrate, the array having formed therein “m” levels of conductive structures, each level formed in a corresponding interlevel dielectric material layer; a dense logic wiring region formed adjacent to the array of light receiving pixel structures having “n” levels of conductive structures, each level formed in a corresponding interlevel dielectric material layer, where n>m. A microlens array having microlenses and color filters formed above the interlevel dielectric material layer, a microlens and respective color filter in alignment with a respective light receiving structure formed at a surface of the substrate. A top surface of the interlevel dielectric material layer beneath the microlens array is recessed from a top surface of the interlevel dielectric material layers of the dense logic wiring region.
Abstract:
An interconnect layout, an image sensor including the interconnect layout and a method for fabricating the image sensor each use a first electrically active physical interconnect layout pattern within an active pixel region and a second electrically active physical interconnect layout pattern spatially different than the first electrically active physical interconnect layout pattern within a dark pixel region. The second electrically active physical interconnect layout pattern includes at least one electrically active interconnect layer interposed between a light shield layer and a photosensor region aligned therebeneath, thus generally providing a higher wiring density. The higher wiring density within the second layout pattern provides that that the image sensor may be fabricated with enhanced manufacturing efficiency and a reduction of metallization levels.
Abstract:
A novel pixel sensor structure formed on a substrate of a first conductivity type includes a photosensitive device of a second conductivity type and a surface pinning layer of the first conductivity type. An isolation structure is formed adjacent to the photosensitive device pinning layer. The isolation structure includes a dopant region comprising material of the first conductivity type selectively formed along a sidewall of the isolation structure that is adapted to electrically couple the surface pinning layer to the underlying substrate. The corresponding method for forming the dopant region selectively formed along the sidewall of the isolation structure comprises an out-diffusion process whereby dopant materials present in a doped material layer formed along selected portions in the isolation structure are driven into the underlying substrate during an anneal. Alternately, or in conjunction, an angled ion implantation of dopant material in the isolation structure sidewall may be performed by first fabricating a photoresist layer and reducing its size by removing a corner, or a corner portion thereof, which may block the angled implant material.
Abstract:
A trench isolation structure for a semiconductor is provided including an isolation ring and an isolation path. The isolation ring surrounds active semiconductor areas and is bordered on the outside by inactive semiconductor area. The isolation path extends from the isolation ring through the inactive semiconductor area. A first level conductor on the isolation path electrically connects or capacitively couples a device in the active semiconductor area to a location on the substrate outside the isolation ring. The isolation path has a configuration derived from the layout of the conductor.
Abstract:
Manufacturing a semiconductor structure including modifying a frequency of a Film Bulk Acoustic Resonator (FBAR) device though a vent hole of a sealing layer surrounding the FBAR device.
Abstract:
Tunable filter structures, methods of manufacture and design structures are disclosed. The method of forming a filter structure includes forming a piezoelectric resonance filter over a cavity structure. The forming of the piezoelectric resonance filter includes: forming an upper electrode on one side of a piezoelectric material; and forming a lower electrode on an opposing side of the piezoelectric material. The method further includes forming a micro-electro-mechanical structure (MEMS) cantilever beam at a location in which, upon actuation, makes contact with the piezoelectric resonance filter.
Abstract:
Disclosed herein is a surface acoustic wave (SAW) filter and method of making the same. The SAW filter includes a piezoelectric substrate; a planar barrier layer disposed above the piezoelectric substrate, and at least one conductor buried in the piezoelectric substrate and the planar barrier layer.
Abstract:
Three dimensional vertical e-fuse structures and methods of manufacturing the same are provided herein. The method of forming a fuse structure comprises providing a substrate including an insulator layer and forming an opening in the insulator layer. The method further comprises forming a conductive layer along a sidewall of the opening and filling the opening with an insulator material. The vertical e-fuse structure comprises a first contact layer and a second contact layer. The structure further includes a conductive material lined within a via and in electrical contact with the first contact layer and the second contact layer. The conductive material has an increased resistance as a current is applied thereto.
Abstract:
A method implants impurities into well regions of transistors. The method prepares a first mask over a substrate and performs a first shallow well implant through the first mask to implant first-type impurities to a first depth of the substrate. The first mask is removed and a second mask is prepared over the substrate. The method performs a second shallow well implant through the second mask to implant second-type impurities to the first depth of the substrate and then removes the second mask. A third mask is prepared over the substrate. The third mask has openings smaller than openings in the first mask and the second mask. A first deep well implant is performed through the third mask to implant the first-type impurities to a second depth of the substrate, the second depth of the substrate being greater than the first depth of the substrate. The third mask is removed and a fourth mask is prepared over the substrate, the fourth mask has openings smaller than the openings in the first mask and the second mask. Then, a second deep well implant is performed through the fourth mask to implant the second-type impurities to the second depth of the substrate.
Abstract:
A plurality of image sensor structures and a plurality of methods for fabricating the plurality of image sensor structures provide for inhibited cracking and delamination of a lens capping layer with respect to a planarizing layer within the plurality of image sensor structures. Particular image sensor structures and related methods include at least one dummy lens layer of different dimensions than active lens layer located over a circuitry portion of a substrate within the particular image sensor structures. Additional particular image sensor structures include at least one of an aperture within the planarizing layer and a sloped endwall of the planarizing layer located over a circuitry portion within the particular image sensor structures.