Abstract:
To achieve high processing capability, a semiconductor device includes first and second circuits, first to third wirings, and first to fourth transistors. The first circuit is electrically connected to the first wiring and a gate of the first transistor. One of a source and a drain of the first transistor is electrically connected to the second wiring. The other of the source and the drain of the first transistor is electrically connected to a gate of the second transistor. The second circuit is electrically connected to the first wiring and a gate of the third transistor. One of a source and a drain of the third transistor is electrically connected to the third wiring. The other of the source and the drain of the third transistor is electrically connected to a gate of the fourth transistor. One of a source and a drain of the fourth transistor is electrically connected to one of a source and a drain of the second transistor. The other of the source and the drain of the fourth transistor is electrically connected to the other of the source and the drain of the second transistor.
Abstract:
A semiconductor device suitable for low-voltage driving. The semiconductor device includes a first transistor, a second transistor, a power supply line, a circuit, and a memory circuit. The first transistor controls electrical continuity between the circuit and the power supply line. The memory circuit stores data for setting a gate potential of the first transistor. The second transistor controls electrical continuity between an output node of the memory circuit and a gate of the first transistor. The second transistor is a transistor with an ultralow off-state current, for example, an oxide semiconductor transistor. In a period for operating the circuit, a first potential is input to the power supply line and the second transistor is turned off. In a period for updating the gate potential of the first transistor, a second potential is input to the power supply line. The second potential is higher than the first potential.
Abstract:
A low-power voltage controlled oscillator is provided. The voltage controlled oscillator includes (2n+1) first circuit components (n is an integer of one or more). An output terminal of the first circuit component in a k-th stage (k is an integer of one or more and 2n or less) is connected to an input terminal of the first circuit component in a (k+1)-th stage. An output terminal of the first circuit component in a (2n+1)-th stage is connected to an input terminal of the first circuit component in a first stage. One of the first circuit components includes a second circuit component and a third circuit component whose input terminal is connected to an output terminal of the second circuit component. The third circuit component includes a first transistor and a second transistor whose source-drain resistance is controlled in accordance with a signal input to a gate through the first transistor.
Abstract:
A semiconductor device suitable for low-voltage driving. The semiconductor device includes a first transistor, a second transistor, a power supply line, a circuit, and a memory circuit. The first transistor controls electrical continuity between the circuit and the power supply line. The memory circuit stores data for setting a gate potential of the first transistor. The second transistor controls electrical continuity between an output node of the memory circuit and a gate of the first transistor. The second transistor is a transistor with an ultralow off-state current, for example, an oxide semiconductor transistor. In a period for operating the circuit, a first potential is input to the power supply line and the second transistor is turned off. In a period for updating the gate potential of the first transistor, a second potential is input to the power supply line. The second potential is higher than the first potential.
Abstract:
In a CMOS image sensor in which a plurality of pixels is arranged in a matrix, a transistor in which a channel formation region includes an oxide semiconductor is used for each of a charge accumulation control transistor and a reset transistor which are in a pixel portion. After a reset operation of the signal charge accumulation portion is performed in all the pixels arranged in the matrix, a charge accumulation operation by the photodiode is performed in all the pixels, and a read operation of a signal from the pixel is performed per row. Accordingly, an image can be taken without a distortion.
Abstract:
Adverse effects of noise are reduced. A photodetector circuit, a difference data generation circuit, and a data input selection circuit are included. The photodetector circuit has a function of generating an optical data signal. A first data signal and a second data signal is input to the difference data generation circuit and the difference data generation circuit has a function of generating difference data of data of the first data signal and data of the second data signal. The data input selection circuit has a function of determining that the data of optical data signal is regarded as data of the first data signal or data of the second data signal.
Abstract:
An object is to achieve low-power consumption by reducing the off-state current of a transistor in a photosensor. A semiconductor device including a photosensor having a photodiode, a first transistor, and a second transistor; and a read control circuit including a read control transistor, in which the photodiode has a function of supplying charge based on incident light to a gate of the first transistor; the first transistor has a function of storing charge supplied to its gate and converting the charge stored into an output signal; the second transistor has a function of controlling reading of the output signal; the read control transistor functions as a resistor converting the output signal into a voltage signal; and semiconductor layers of the first transistor, the second transistor, and the read control transistor are formed using an oxide semiconductor.
Abstract:
A low-power voltage controlled oscillator is provided. The voltage controlled oscillator includes (2n+1) first circuit components (n is an integer of one or more). An output terminal of the first circuit component in a k-th stage (k is an integer of one or more and 2n or less) is connected to an input terminal of the first circuit component in a (k+1)-th stage. An output terminal of the first circuit component in a (2n+1)-th stage is connected to an input terminal of the first circuit component in a first stage. One of the first circuit components includes a second circuit component and a third circuit component whose input terminal is connected to an output terminal of the second circuit component. The third circuit component includes a first transistor and a second transistor whose source-drain resistance is controlled in accordance with a signal input to a gate through the first transistor.
Abstract:
A semiconductor device capable of generating a signal (e.g., a potential signal or a current signal) suitable for usage environment or a purpose. The semiconductor device includes a first memory circuit, a first circuit, and a second memory circuit. The first circuit converts a digital signal input from the first memory circuit into an analog signal. The first memory circuit includes an input node, an output node, a transistor, and a capacitor. The capacitor is electrically connected to the output node. The transistor can control a conduction state between the input node and the output node. An analog signal is input to the input node from the first circuit. The transistor includes an oxide semiconductor layer where a channel formation region is formed.
Abstract:
A low-power semiconductor device is provided. A memory device applicable to a multi-context programmable logic device (PLD) includes at least memory cells the number of which is the same as the number of contexts. Output nodes of the memory cells are electrically connected to an output node of a configuration memory through different path transistors. A circuit including a transistor and a capacitor makes a gate potential of the path transistor higher than a high-level potential. This prevents a decrease in the potential of the output node of the configuration memory due to the threshold voltage of the path transistor without an increase in power consumption.