摘要:
In a method of manufacturing a semiconductor device, an insulating film is formed on a semiconductor substrate. A semiconductor film pattern is formed on the insulating film. A direct thermal nitriding method is performed to at least a portion of the semiconductor film pattern. The direct thermal nitriding method is performed by lamp annealing in a gas composed of nitrogen such that a thermally nitrided film has a film thickness of equal to or thicker than 1.5 nm. Thus, invasion of a hydrogen atom or ion into the semiconductor film pattern can be prevented.
摘要:
A semiconductor device includes a first insulating film formed on a semiconductor substrate. Wiring patterns are partially formed on the first interlayer insulating film. A second insulating film is formed to cover the first insulating film and the wiring patterns. A third insulating film is formed on the second insulating film. In this case, at least an upper surface portion of the first insulating film has a moisture containing percentage lower than that of the second insulating film.
摘要:
A first insulating film with a dielectric constant lower than that of a silicon oxide film is formed on a semiconductor substrate. Next, a second insulating film, which has degrees of moisture absorption and deformation in an oxygen plasma process and exposure to a resist releasing solution equal to or less than those of a silicon oxide film, is formed on the first insulating film. Then, a third insulating film, which has degrees of moisture absorption and deformation in an oxygen plasma process and exposure to a resist releasing solution equal to or less than those of a silicon oxide film are formed on the second insulating film. Thereafter, the third insulating film is patterned to a prescribed pattern. An opening is formed in the first and second insulating films using the third insulating film as a mask.
摘要:
A method of manufacturing a semiconductor device includes forming a first insulating film over an underlying film by plasma polymerization of cyclic siloxane, and forming a second insulating film on the first insulating film by plasma polymerization of the cyclic siloxane continuously, after forming the first insulating film. The deposition rate of the first insulating film is slower than the deposition rate of the second insulating film.
摘要:
A semiconductor device is manufactured by forming a first reinforcing insulating film and a first sacrificial interlayer. A first trench is formed and then filled with an interconnect covered with a cap metal. First and second sacrificial barrier dielectrics are formed, and the second sacrificial interlayer and the sacrificial barrier dielectric are selectively removed to form a hole exposing the cap metal. A conductive via connects the interconnect by forming a conductor in the hole, and a second cap metal covers the via. The interconnect exposes the via by selectively removing the sacrificial interlayers and dielectric. An insulating film covers the side wall and the upper portion of the interconnect, and the side wall of the conductive via which is connected to the interconnect from the side wall of the interconnect through the side wall of the via. An air-gap is provided in the insulating film.
摘要:
In a semiconductor device, an insulating interlayer having a groove is formed on an insulating underlayer. A silicon-diffused metal layer including no metal silicide is buried in the groove. A metal diffusion barrier layer is formed on the silicon-diffused metal layer and the insulating interlayer.
摘要:
A method of producing a semiconductor device includes forming, on a first insulating film formed on a substrate, a first groove in an element-forming region to form one of a via and a wiring therein, and a first seal ring groove in a seal ring part, forming one of a via and a wiring in the first groove and a first metal layer in the first seal ring groove, and then removing the metal material in a part exposed to an outside of the first groove and the first seal ring groove, forming a second insulating film on the first insulating film, forming, on the second insulating film, a second groove, and a second seal ring groove in the seal ring part on the first seal ring groove, and forming one of a via and a wiring in the second groove and a second metal layer.
摘要:
A method of manufacturing a semiconductor device, includes burying a conductive pattern in an insulating film made of SiOH, SiCOH or organic polymer, treating surfaces of the insulating film and the conductive pattern with plasma which includes a hydrocarbon gas as a treatment gas, and forming a diffusion barrier film, which is formed of an SiCH film, an SiCHN film, an SiCHO film or an SiCHON film, over the insulating film and the conductive pattern with performing a plasma CVD by adding an Si-containing gas to the treatment gas while increasing the addition amount gradually or in a step-by-step manner.
摘要:
An interconnect is provided in a first insulating layer and the upper surface of the interconnect is higher than the upper surface of the first insulating layer. An air gap is disposed between the interconnect and the first insulating layer. An etching stopper film is formed over the first insulating layer, the air gap, and the interconnect. A second insulating layer is formed over the etching stopper film. A via is provided in the second insulating layer and is connected to the interconnect. A portion of the etching stopper film that is disposed over the air gap is thicker than another portion that is disposed over the interconnect.
摘要:
A first gas including a silicon-containing compound is introduced into a vacuum chamber, to expose a semiconductor substrate placed in the chamber to the first gas atmosphere (silicon processing step). Then the pressure inside the vacuum chamber is reduced to a level lower than the pressure at the time of starting the silicon processing step (depressurizing step). Thereafter, a second gas including a nitrogen-containing compound is introduced into the vacuum chamber, and the semiconductor substrate is irradiated with the second gas plasma (nitrogen plasma step).