Method and system for determining a biological response of a target to a soluble candidate substance
    82.
    发明申请
    Method and system for determining a biological response of a target to a soluble candidate substance 有权
    用于确定靶向可溶性候选物质的生物反应的方法和系统

    公开(公告)号:US20160011180A1

    公开(公告)日:2016-01-14

    申请号:US14771437

    申请日:2014-03-04

    Abstract: A method for determining a biological response of a target (41, 42) to a soluble candidate substance comprises the steps: introducing a soluble candidate substance into a laminar flow of a buffer liquid (2) to form a candidate substance solute (3) having an initial concentration profile (31); dispersing the initial concentration profile (31) to form a dispersed concentration profile (32); directing the dispersed concentration profile (32) into a detection channel (12) to form a final symmetrical concentration profile (33) therein; introducing a target into the detection channel (12) to obtain a combined concentration profile comprising a constant target concentration profile overlying the final symmetrical concentration profile (33); holding in the detection channel (12) at least one half of the combined concentration profile; and optically scanning the combined concentration profile to detect an optical signal representative of the biological response of the target to the soluble candidate substance.

    Abstract translation: 用于确定靶(41,42)对可溶性候选物质的生物反应的方法包括以下步骤:将可溶性候选物质引入缓冲液体(2)的层流中以形成候选物质溶质(3),其具有 初始浓度分布(31); 分散初始浓度分布(31)以形成分散浓度分布(32); 将分散的浓度分布(32)引导到检测通道(12)中以在其中形成最终对称的浓度分布(33); 将目标引入检测通道(12)以获得组合浓度分布,其包括覆盖最终对称浓度分布(33)的恒定目标浓度分布; 在所述检测通道(12)中保持所述组合浓度分布的至少一半; 并且光学扫描组合的浓度分布,以检测表示靶向可溶性候选物质的生物反应的光学信号。

    Isolating Microfluidic Structures and Trapping Bubbles
    83.
    发明申请
    Isolating Microfluidic Structures and Trapping Bubbles 审中-公开
    隔离微流体结构和捕获气泡

    公开(公告)号:US20150352547A1

    公开(公告)日:2015-12-10

    申请号:US14732682

    申请日:2015-06-06

    Abstract: Some configurations of a microfluidic apparatus can comprise a fluidic circuit of interconnected fluidic structures into which a plurality of different media can be introduced or extracted. A variety of operations can be performed with the different media including isolating with a second medium one or more of the fluidic structures that is filled partially or fully with a first medium. Discrete volumes of a medium can be moved through the isolating second medium to deliver materials or micro-objects to or remove micro-objects or materials from a fluidic structure that is otherwise isolated by the second medium. Some configurations of a microfluidic apparatuses can isolate microfluidic structures in a microfluidic apparatus using flow rates or blocking structures, and some configurations can manage bubbles in fluidic structures.

    Abstract translation: 微流体装置的一些构造可以包括互连流体结构的流体回路,多个不同介质可以被引入或提取到流体结构中。 可以使用不同的介质进行各种操作,包括用第二介质隔离一种或多种用第一介质部分或完全填充的流体结构。 介质的离散体积可以移动通过隔离的第二介质,以将材料或微物体输送到或从其被第二介质分离的流体结构中去除微物体或材料。 微流体装置的一些构造可以使用流速或阻塞结构隔离微流体装置中的微流体结构,并且一些配置可以管理流体结构中的气泡。

    Microfluidic device
    85.
    发明授权
    Microfluidic device 有权
    微流控装置

    公开(公告)号:US09205396B2

    公开(公告)日:2015-12-08

    申请号:US13131356

    申请日:2009-11-26

    Applicant: Susumu Arai

    Inventor: Susumu Arai

    Abstract: The present invention is to provide a microfluidic device capable of allowing a fluid to stably flow in a microchannel without using an external source such as a pump or a suction device, and the microfluidic device, provided with a microchannel to which a sample liquid is transported, includes: an inlet reservoir which reserves a sample liquid to be introduced into said microchannel; an inlet which is provided on a sample-introduced side of the microchannel, and communicates with the inlet reservoir; an outlet provided on a sample-discharged side of the microchannel; and an open channel which is provided as communicating with the outlet, and part of at least one surface of which is opened to the outside atmosphere, wherein the inlet is provided at a higher position in a gravity direction than the outlet.

    Abstract translation: 本发明提供一种微流体装置,其能够允许流体在微通道内稳定地流动而不使用诸如泵或抽吸装置的外部源,以及微流体装置,其设置有运送样品液体的微通道 包括:入口储存器,其保留待引入所述微通道的样品液体; 入口,设置在所述微通道的样品导入侧,并与所述入口容器连通; 设置在微通道的样品排出侧的出口; 以及开口通道,其设置为与所述出口连通,并且其至少一个表面的一部分向外部大气开放,其中所述入口设置在比所述出口在重力方向更高的位置。

    SUCTION TIP, OBJECT OBSERVATION DEVICE USING THE SUCTION TIP, AND OBJECT OBSERVING METHOD
    86.
    发明申请
    SUCTION TIP, OBJECT OBSERVATION DEVICE USING THE SUCTION TIP, AND OBJECT OBSERVING METHOD 审中-公开
    吸收提示,使用抽取提示的对象观察装置和对象观察方法

    公开(公告)号:US20150323426A1

    公开(公告)日:2015-11-12

    申请号:US14650536

    申请日:2012-12-13

    Inventor: Saburo ITO

    Abstract: A suction tip, an object observation device and an object observing method using the suction tip. The suction tip is provided with an internal tubular passage serving as a suction path for sucking an object, a distal end portion disposed in a substantially vertical direction when in use and including a suction port for sucking the object, the suction port being an opening formed in one end of the tubular passage; and a trap portion formed downstream of the distal end portion in a suction direction, and configured to trap the object to be sucked through the suction port. According to the suction tip, the object observation device and the object observing method using the suction tip, it is easy to collect the object, without falling and discharging of the collected object in the gravitational direction.

    Abstract translation: 抽吸头,物体观察装置和使用吸嘴的物体观察方法。 抽吸头设置有用作抽吸物体的吸入路径的内部管状通道,在使用时设置在大致垂直方向上的前端部,并且包括用于吸取物体的吸入口,所述吸入口形成为开口 在管状通道的一端; 以及在吸引方向上形成在前端部的下游的捕获部,并且被构造成通过吸入口捕获被吸收物体。 根据吸嘴,物体观察装置和使用吸嘴的物体观察方法,容易收集物体,而不会在重力方向上收集物体的下落和排出。

    SYSTEMS, METHODS AND COMPONENTS FOR ISOLATING CELLS FROM A FLUID SAMPLE
    89.
    发明申请
    SYSTEMS, METHODS AND COMPONENTS FOR ISOLATING CELLS FROM A FLUID SAMPLE 审中-公开
    用于从流体样品中分离细胞的系统,方法和组分

    公开(公告)号:US20150285717A1

    公开(公告)日:2015-10-08

    申请号:US14403542

    申请日:2013-05-29

    Abstract: A system for isolating preselected cell types from a fluid sample that includes a plurality of cell types includes a cell-capture fluidic chip, and a chip holder configured to receive the cell-capture fluidic chip and to maintain the cell-capture fluidic chip with a substantially fluid-tight seal while in operation. The chip holder is further configured to release the cell-capture fluidic chip to be removed from the chip holder for further processing. The cell-capture fluidic chip includes a substrate, a laser micro-dissection membrane disposed on the substrate, and a channel-defining layer disposed on the laser micro-dissection membrane. The laser micro-dissection membrane has a surface adapted to capture preselected cell types preferentially over other cell types of the plurality of cell types. The channel-defining layer is removable from the laser micro-dissection membrane for further processing of the cell-capture fluidic chip.124

    Abstract translation: 用于从包括多个细胞类型的流体样品中分离预选细胞类型的系统包括细胞捕获流体芯片和被配置为接收细胞捕获流体芯片并且将细胞捕获流体芯片维持在 在运行时基本上是流体密封的。 芯片保持器进一步构造成释放要从芯片保持器移除的细胞捕获流体芯片用于进一步处理。 细胞捕获流体芯片包括基板,设置在基板上的激光微解剖膜和设置在激光微分离膜上的通道限定层。 激光微解剖膜具有适于比多种细胞类型的其它细胞类型优先捕获预选细胞类型的表面。 通道限定层可从激光微解剖膜移除,用于细胞捕获流体芯片的进一步处理。 124

    Sensor for measuring amount of heat generated from cells using zweifach-fung effect and method for manufacturing the same
    90.
    发明授权
    Sensor for measuring amount of heat generated from cells using zweifach-fung effect and method for manufacturing the same 有权
    用于测量使用zweifach-fung效应的细胞产生的热量的传感器及其制造方法

    公开(公告)号:US09151682B2

    公开(公告)日:2015-10-06

    申请号:US13696893

    申请日:2010-12-08

    Abstract: A sensor for measuring heat generated from cells, including a thermopile manufactured by surface-micromachining technology, and a microfluidic flow-channel structure for mixing cells with medium and dividing the mixture into cells and medium. Medium and cells are uniformly mixed using a micro-mixer. The mixture is separated into a medium microfluid and a cell microfluid using the Zweifach-Fung effect, after which signals measured in the two microfluids are amplified. The difference between the two signal values determines the amount of heat generated from the cells. The influence of noise caused by a change in external environment is eliminated. Convection heat dissipation caused by fluid flow is minimized. The sensor accurately measures the amount of heat generated from cells flowing in the microfluidic flow-channel. Diseases such as cancer are diagnosed using the difference between the measured amount of heat generated from cells and the standard amount of heat generated from normal cells.

    Abstract translation: 用于测量由细胞产生的热量的传感器,包括通过表面微加工技术制造的热电堆,以及用于将细胞与培养基混合并将混合物分成细胞和培养基的微流体流动通道结构。 使用微型混合器将培养基和细胞均匀混合。 使用Zweifach-Fung效应将混合物分离成介质微流体和细胞微流体,之后扩增在两个微流体中测量的信号。 两个信号值之间的差异决定了从单元格产生的热量。 消除了由外部环境变化引起的噪声的影响。 由流体流动引起的对流散热最小化。 传感器精确地测量在微流体流动通道中流动的细胞产生的热量。 使用从细胞产生的测量量与从正常细胞产生的标准热量之间的差异来诊断诸如癌症的疾病。

Patent Agency Ranking